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Abstract

The complexity of large-scale dynamic systems provides a challenging proving
ground for modern control system analysis and design techniques. High plant
dimensionality inherent in large-scale systems can lead to breakdowns in numerics of state-
space algorithms or intolerably long computational times, necessitating use of model
reduction techniques. Reducing plant order consequently introduces unmodeled dynamics
into the system, which must then be accounted for via stability and performance robustness
considerations. A design framework is adopted herein which allows stability robustness to
be guaranteed via unstructured uncertainty representation and the Small Gain Theorem, and
performance robustness to be independently verified. The applicability of modem
multivariable controller design techniques to large-scale systems is demonstrated by
synthesis of robustly stable H2 optimal, H.; optimal, and H 2/H6I loop-shaped
compensators for a space-based laser forebody using reduced order models. Performance
goals are expressed in terms of both allowable 2-norms and root-mean-square values of
line-of-sight and segment phasing errors, and an evolutionary process leads to a final
controller design. First, ideally performing but non-robust unconstrained bandwidth H2

and H.* designs are presented which illustrate the danger of ignoring unmodeled high-
frequency dynamics. Then robustly stable but poorly performing reduced bandwidth H2
and H. designs are derived, achieved via constant penalizing of the system control at all

frequencies. Next, frequency-dependent penalty of the errors/controls leads to H2/H..
loop-shaping designs, which yield superior closed-loop performance and stability
robustness. Issues relating to digital implementation of continuous-time controllers are
addressed, a study of reduced-order compensators is performed, and the final design is
validated via time domain simulation and steady-state covariance analysis. Finally,
performance robustness issues and effects of parametric uncertainty on open-loop system
model natural frequencies are addressed.
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CHAPTER 1

Introduction

1.1 Background

Following President Ronald Reagan's launching of the Strategic Defense Initiative
(SDI) in 1983, great interest was generated in the United States' research and development

community toward viable system concepts for protecting this country from the threat of
weapons delivered through outer space. The prime motivation for developing such a

defense system lay in the large stockpile of nuclear warheads amassed by the Soviet Union
in the 1970s, and the arsenal of intercontinental ballistic missiles (ICBMs) maintained to

deliver them. The purpose of SDI was to research and develop systems that could

somehow render ICBMs harmless before they struck their ground targets, preferably while
the warheads were still outside the earth's atmosphere. During the course of the mid and
late 1980s, several widely different concepts to meet this purpose were considered, and one
that generated great interest and enthusiasm was that of the space-based laser (SBL). At the

time of SDI's inception however, a number of critical technologies required for
implementation of the space-based laser concept were lacking. These undeveloped

technologies included mirror manufacturing techniques, power generation methods, and
signal processing/control system algorithms and hardware, to name but a few. The
widespread and intense research effort of the mid and late 1980s led to progress in many of

these areas, but realizable and effective control system design for space-based lasers
remains a topic of current research. It is this topic that is pursued in this thesis.
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1.2 SBL System Concept

Before proceeding further, a brief and somewhat general description of an SBL

physical system concept and relevant terminology is presented to facilitate discussion. For

purposes of this study, the space-based laser can be visualized as consisting of two parts,

the forebody and the aftbody. The aftbody consists of the satellite platform, and contains

all necessary equipment for orbital station-keeping and satellite attitude control. In

addition, the SBL aftbody contains the mechanisms required for generation of the high-

energy laser (HEL) beam, and adequate optical components for transfer of the beam to the

SBL forebody. The forebody of the SBL houses the beam expander assembly (BEA),

which consists of a large, deformable primary mirror attached to a rigid bulkhead support,

a much smaller and stiffer secondary mirror, a metering truss to maintain relative positions

of the two mirrors, and all necessary sensors and actuators for accomplishing required

control functions. The BEA points, magnifies, and focuses the HEL beam generated in the

aftbody as necessary to meet various mission requirements. Figure 1.1 below shows the

SBL forebody. Further details concerning the SBL are provided along with the description

of the system model in Chapter 2.

Figure 1.1 SBL Forebody.
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1.3 Problem Description

Simply stated, the objective of the space-based laser is to place sufficient energy on a

distant, rapidly moving target for a long enough duration to accomplish one of several

envisioned tasks, all having to do with negation of the threat posed by the target. The

control aspects of the SBL problem are numerous and formidable. They encompass

several tasks, including high-energy laser beam generation and propagation, satellite

platform orbital and attitude control, and acquisition, tracking, and pointing (ATP)

functions.

One of the most challenging areas of the SBL control problem is that of beam control.
Beam control consists of two main functions: beam pointing and wavefront control, both

of which involve steerable and/or deformable optical components. Beam pointing involves

placing and maintaining the HEL beam on a desired aimpoint, while wavefront control

deals with maintaining a spatially coherent and in phase sequence of light waves.

Wavefront control is the most difficult of the two functions, for it involves extremely

precise shape control of the entire SBL primary mirror, which is envisioned as having a

diameter of ten meters or more. Due to the large size of this primary mirror, current

manufacturing and deployment scenarios call for the primary mirror to be composed of

several mirror segments or petals. Longitudinal misalignments of the mirror segment edges

result in differences in optical path length for various parts of the laser beam, thereby

inducing wavefront phasing errors and potentially destructive interference (see Figure 1.2).

Preventing degradation of laser beam quality due to these separations is referred to as the

segment phasing aspect of the wavefront control problem [1].
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Figure 1.2 Primary Mirror Misalignment and Segment Phasing Error.

Beam pointing is also a complex control task, involving boresight measurements,
autoalignment, and beam jitter control functions [2]. Roughly speaking, boresighting

involves placing the laser beam on a selected aimpoint, and jitter control involves keeping it

there in the presence of disturbances, such as vibrations transmitted through the SBL
bulkhead. Autoalignment refers to the static coordination of the various laser beam steering

components on the fore and aftbodies of the SBL in order to assure smooth transfer of the

HEL beam.

This thesis addresses the problem of simultaneously maintaining tight beam jitter
control and minimizing the effects of destructive interference induced via segment phasing.
The control algorithms considered are all of a centralized nature, meaning that all sensory

data is processed and control authority will be generated from one central computer. Shape

control of the primary mirror for the purpose of wavefront control is not addressed, nor are

station-keeping and attitude control issues considered. These three control functions will
fall under the jurisdiction of actuators different from those used for the beam jitter and

segment phasing problems.
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1.4 Discussion

Control system synthesis for "large-scale" uncertain systems such as the SBL forebody

described above poses many challenges to the control engineer. Typical large-scale

systems, such as flexible space structures, often possess very little damping, placing the

open-loop poles of such systems close to the s-plane imaginary axis, and ;,us close to

open-loop instability. The presence of a large number of open-loop poles near the

instability boundary can lead to difficulties in obtaining closed-loop stability and/or stability

robustness. Also, structural models of large-scale systems typically possess dynamics

encompassing a large range of open-loop natural frequencies. Large magnitude differences

between open-loop poles leads to ill-conditioned system model matrices, making certain

numerical computations difficult. Truncation of high frequency dynamics and/or

construction of slow/fast control loops may therefore be required.

The size and complexity of large scale systems pose additional problems for the

designer. State-space models of large-scale systems are typified by matrices of very large

dimensions, hence the categorization as "large-scale". The sheer bulk of such models can

cause difficulties with the numerics of solution algorithms, in addition to requiring

excessive amounts of valuable computational time and resources. Also, model-based

control system design methodologies prescribe high-order compensators for high-order

plants. Compensators of such large order are cumbersome to implement due to excessive

data processing time requirements, and model reduction methods must therefore be used to

obtain simpler realizations.

Approximating the plant with reduced-order models introduces errors into the system,

which must then be considered in the design process. Of course, as is necessary for all

realistic design problems, the control system design engineer must deal with unpredictable

disturbances acting on the system and with unintentional modelling errors or uncertainties,

such as parametric uncertainty (uncertainty in knowledge of plant parameters). These

considerations lead to robustness of stability and performance issues which the designer

must address.

Finally, implementation issues must be examined to assess the practicality of the design

being considered. Centralized versus decentralized control authority, determination of

allowable order of the compensator and methods of implementation, and software or

hardware limitations are just some of the issues to be examined.
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Fortunately for the control system engineer, a variety of procedures (pole-placement,
LQG/LTR, H2 , H,., g-synthesis, LI, etc.) [31 are currently available to help the designer

meet specified performance goals. However, not all of these methods are applicable to any

given problem. The control system designer must select the method which yields the best

results for the given problem and design objectives. This, then, suggests the need to apply

the applicable algorithms to the given problem and compare results to identify the "best"

controller for the stated performance goals. For typical large-scale system examples, once

an appropriately sized reduced-order model is obtained, the synthesis procedures can be

applied to design the various controllers, and closed-loop performance and robustness can

be evaluated.

1.5 Thesis Contributions and Outline

Past efforts related to the mirror control problem have employed both single input,

single output (SISO) [4,5] and modern multivariable design techniques [1,6]. SISO
approaches attempt to model the system dynamics as a series of independent SISO

systems, and ignore the potentially significant effects of dynamic coupling between various
input-output pairs. Multivariable approaches, on the other hand, allow coupling between

inputs and outputs to be fully represented in system models, and therefore yield more

accurate results. Since typical large-scale systems are represented by high-order models

with multiple sensors and actuators that inevitably possess some degree of dynamic

coupling, multivariable design methods are clearly more appropriate for this type of
problem. In [1] the LQG/LTR approach was applied to the segment phasing problem,

demonstrating the applicability of this multivariable design method to the problem, but

failing to achieve desired performance results. In [6] a preliminary analysis addressing the
applicability of the gt-synthesis design procedure to the beam jitter disturbance rejection

problem was considered.

This thesis carries out a comprehensive multivariable feedback controller synthesis

procedure for the combined SBL BEA segment phasing and beam jitter control problems.
Details and results of application of H2 optimal, H. optimal, and H2/H,, loop-shaping

design methodologies [7] are presented, and the trade-offs resulting from use of the various

design techniques are thoroughly illustrated. The use of model reduction techniques to
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obtain an appropriately sized design model, in conjunction with use of the Small Gain
Theorem to guarantee stability robustness to the truncated dynamics, is also shown.
Additionally, a technique for requirements analysis via H". optimization is introduced.

Following compensator design, numerous practical implementation issues are addressed,
including digital implementation of continuous-time compensators, reduction of
compensator order, design validation via simulation and covariance analysis, and effects of
open-loop natural frequency parametric uncertainty. Finally, performance robustness of
the final design selected to unmodeled dynamics is verified.

Following this introductory chapter, this thesis is organized as follows:

Chapter 2 provides a concise statement of the problem considered in this thesis. The
SBL physical system concept is discussed in detail, coordinate systems are introduced, the
SBL mathematical model is derived, and system performance goals are identified.

Chapter 3 discusses results of various analysis methods for the open-loop system, to
include nominal system stability, multivariable poles and transmission zeros, and the
singular value frequency response and its importance to multivariable control system

design.

In Chapter 4 system controllability/observability issues are discussed, and these topics

lead directly to an examination of model reduction techniques, which are surveyed and then

applied to the SBL BEA model.

Chapter 5 presents a methodology for modern multivariable robust control system
design. Various analysis and design techniques are addressed, and all necessary conditions

and equations for compensator synthesis and stability robustness analysis are presented.

The topic of Chapter 6 is the Design Plant Model (DPM). Disturbance levels are

determined, and application of design techniques to reduced-order system models for the

purpose of measurements requirements analysis is performed. The chapter concludes with
modeling and augmentation of plant uncertainty so as to complete formulation of the plant

model in order that compensator design may proceed.

Chapter 7 provides an in-depth examination of unconstrained bandwidth, robustly
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stable, and loop-shaped compensator designs. Evaluation of closed-loop performance and

stability robustness is performed, compensator singular values are examined, and

bandwidth issues are addressed. The various designs are compared, and a single "best"

design is selected based on specified performance objectives.

Implementation/validation issues for the selected design are discussed in Chapter 8,
including digital imolementation issues and sampling requirements, reduced-order

compensator studies, transient responses and steady-state covariance analysis, and effects

of parametric uncertainty cn open-loop natural frequencies. Verification of performance
robustness is also addressed.

Chapter 9 concludes the thesis with a summary of results and conclusions, and some

recu,,rnendations for further research.
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CHAPTER 2

Problem Statement

2.1 Problem Summary

This thesis describes the methods used and procedural steps taken in carrying out a
robust controller design procedure for beam control of a space-based laser (SBL) example
using three modem methodologies: H2, I-., and H2/H,. loop-shaping techniques. All of

these methodologies are applicable to the output feedback problem considered, although the
performance objectives of each can be interpreted as being somewhat different. As
mentioned previously, the main design objectives are to robustly control the laser beam
line-of-sight (LOS) through primary mirror actuation (jitter control), while simultaneously
minimizing degradation of beam quality due to misalignments of the mirror segment edges

(segment phasing).

2.2 The SBL Model

2.2.1 Physical System Description

Due to its importance with regard to beam jitter and segment phasing control issues, the
s) ',tem model used for this study is limited to the beam expander assembly of the SBL, a
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schematic of which appears in Figure 2.1'. The aftbody of the SBL is modeled as being

dynamically decoupled from the BEA, although an imperfect gimbal isolation subsystem

connection allows the aftbody to impart two broadband vibrational torque disturbances to

the primary mirror bulkhead support of the forebody. Indeed, these torque disturbances

are the primary reason why an active feedback control system is required.

1.4 m

,z(PRIMARY) 9CLDI
I -- 0.6M

Insmlfe om h E ossso th pimr an"scodayiors tucua
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TRACKER
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Figure 2.1 SBL Beam Expander Assembly.

In simplified form, the BEA consists of the primary and secondary mirrors, structural

supports, 120 surface figure actuators, 24 rigid body push-pull mirror segment reaction
structure force actuators (6 per segment), a line-of-sight/jitter error sensing subsystem, and

27 mirror segment edge translation sensors. The optical design of the beam expander

consists of a 10-m diameter paraboloidal primary mirror with a 12-m focal length, and a

confocal secondary mirror with a 0.8-m focal length and a 0.67-m diameter. Due to

deployment and manufacturing limitations imposed by its large size, the primary mirror is
made up of four flexible mirror segments (1 center and 3 outer segments), the shapes of

which are controlled by surface figure actuators connecting the mirror segments to rigid

reaction plate structures. The four primary mirror segment reaction structures are in turn

I The SBL model, developed under Independent Research and Development funding at the C.S. Draper

Laboratory, possesses generic characteristics typical of SBL conceptual designs.
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kinematically mounted to a rigid bulkhead support, placed so that the mirror segments
nominally form a parabola when aligned. The center segment is shaped like a parabolic

annulus, and the outer segments simply extend the parabola. The one meter diameter
circular hole through the middle of the center segment allows the high-energy laser beam to
pass forward from the aftbody to the secondary mirror, which is held in place by a
graphite-epoxy tripod metering truss. The secondary mirror reflects the HEL beam back to
the primary mirror, which then focuses the magnified beam downrange on a target.

Fine pointing of the beam is accomplished via the six segment piston actuators

connecting each segment reaction structure to the bulkhead support. These six actuators are
arranged in three pairs, with each pair located at the vertex of an imaginary equilateral
triangle (see Figure 2.2). Each actuator pair has one in-plane and one out-of-plane piston.
The direction of motion of each in-plane piston is tangent to the circle connecting the
vertices of the imaginary equilateral triangle, while the out-of-plane pistons move through

the vertices in a plane perpendicular to the triangle (in and out of the plane of Figure 2.2).

Thus arranged, each actuator pair triad represents a redundant 3-dimensional orthogonal
basis, allowing for six independent actuation degrees-of-freedom per petal. These degrees-

of-freedom can be used to completely control the three dimensional translation and rotation

of each petal, within the range of motion allowed by the piston actuators.

0

Figure 2.2 Outer Segment Position Actuator Configuration.
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For purposes of discussion of the sensors, it is convenient to define a local orthogonal
coordinate system, RTZ, for each nodal point on the BEA finite element grid (see Figure
2.3). The coordinate frame is determined by the nodal point, the point located at the middle
of the center segment, and the point corresponding to the centroid of the secondary mirror.

The point located at the middle of the center segment is defined as the origin for all these
axis systems, with lines connecting the origin and the other two points mentioned above

determining axis directions. The line from the origin through the centroid of the secondary
mirror determines the Z direction (the nominal beam pointing direction), while the line from
the origin to any point on the BEA determines the radial or R direction. Finally, the
tangential or T direction is determined from the tangent to the circle about the origin that
passes through the given nodal point. It is also convenient to define an orthogonal axis

system, XYZ (see Figure 2.4), with origin and Z direction the same as for the RTZ axis
systems, Y direction pointing toward the "top" of the BEA, and X direction defined to yield

a right-handed coordinate system.

z

Figure 2.3 BEA RTZ Coordinate Axis System.
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jX
Figure 2.4 BEA XYZ Coordinate Axis System.

An outgoing wavefront sensor, colocated with the secondary mirror, is equipped with

sensors for detecting line-of-sight/jitter errors in a plane perpendicular to the line-of-sight.

These measurements come in the form of angular deviations of the HEL beam wavefront

normal from the LOS about both the X and Y coordinate axes. At 21 points along the

primary mirror segment edges, edge gap sensors provide information on the size of

separations between the plate edges resolved in RTZ coordinates, as depicted in Figure 2.5.
At points 1, 5, and 9, three measurements are available to provide relative misalignment

data between the three petals that meet at those points, while the 18 other individually
located sensors yield one measure each, totaling 27 segment phasing measurements

available. Combined with the wavefront sensor, these edge gap sensors provide the

necessary measurements for beam jitter and segment phasing control designs.
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Figure 2.5 Segment Phasing Sensor Locations.

In addition to the wavefront and segment phasing sensors, a wide-field-of view
infrared tracker attached to the primary mirror bulkhead support provides information for

determining the LOS to the target.

2.2.2 Mathematical Model

In Chapter 5, a framework for robust control system synthesis is discussed which
assumes that the system to be controlled, as modeled by the transfer function G(s), can be
depicted as in the block diagram of Figure 2.6. In the figure, K(s) represents a dynamic
output-feedback compensator, A(s) represents any uncertainties present in the open-loop
plant, z and w are the respective input and output to the uncertainty block, d includes all
exogenous signals acting on the plant (disturbances, sensor noises, and reference inputs), e
is the performance or error variable (to be kept small), u is the control input, and y is the
measured output.
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Figure 2.6 Block Diagram Representation of Open-Loop Plant

(3-Block Form).

It is further assumed that the dynamics of the open-loop plant can be represented

mathematically by a set of first-order, linear differential and matrix algebraic equations of

the form

i(t) = A x(t) + B1 w(t) + B2 d(t) + B3 u(t)

z(t) = C1 x(t) + D1I w(t) + D12 d(t) + D13 u(t)

e(t) = C2 x(t) + D21 w(t) + D22 d(t) + D23 u(t)

y(t) = C3 x(t) + D31 w(t) + D32 d(t) + D33 u(t) (2.1)

where x(t) represents a vector consisting of the "state variables" of the system. In contrast

to the 3-block representation used for control system design, however, the linear systems
analysis and model reduction of Chapters 3 and 4 require that the open-loop plant be
represented by a single block transfer function, as shown in Figure 2.7. A one-block
system model of the BEA segment phasing/jitter control system for use in Chapters 3 and 4
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is now derived. In the course of this derivation, intermediate equations consistent with the

3-block system representation used in Chapter 5 are presented. These intermediate

equations are revisited in Section 5.3, when formulation of the complete 3-block system

model is addressed.

z G (s) y

Figure 2.7 Block Diagram Representation of Open-Loop Plant

(1-Block Form).

In order to obtain a mathematical model of the SBL forebody for analysis and control

system design purposes, a NASTRAN finite element program was employed. Although

the BEA is theoretically a distributed parameter system with an infinite number of modes,

the primary mirror can be represented to sufficient accuracy by modeling the system as
consisting of a finite number of masses lumped at convenient node points. The motion of

these lumped masses is then assumed to fully represent the structure's dynamics. Since the

secondary mirror is much smaller and stiffer than the primary mirror, it is modeled as a
rigid body kinematically mounted to the metering truss. The primary mirror bulkhead

support and the metering truss are modeled using beam bending elements, and additional
lumped masses are included to account for nonstructural masses, such as the mirror cooling

system and electronics, and the target tracker. Since the segment position actuators are
high-speed force actuators, they are modeled as linear springs with time constants much

faster than the system dynamics.

Finite element theory and Newton's 2nd Law of Motion is used to derive the second

order matrix differential equation that represents the system dynamics

M i(t) + K z(t) = BD dT(t) + BA u(t) (2.2)

where M and K respectively represent mass and stiffness matrices, z represents the nodal

displacement vector, dT represents the two element torque disturbance vector in Newton-

meters (N-m), BD is the disturbance influence matrix, u represents the 24 element actuator
control vector in Newtons (N), and BA is the control influence matrix.
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A matrix 4D whose columns are the normalized mode shapes is found such that

(DT M 4D = I

and

DT K D = Q2

where I is the appropriately dimensioned identity matrix, and a2 represents a diagonal

matrix of natural frequencies associated with each mode of the system.

A transformation to modal coordinates is performed by letting

z(t) = (D TI(t)

and premultiplying (2.2) by (DT to yield

M4Dq(t) + 4T K4Drl(t) = 4 T BDdT(t) + ) B A u(t) (2.3)

or

f(t) + f22Tl(t) = 4T BD dT(t) + 4J BA u(t) (2.4)

Finally, a small, uniform damping term is augmented to (2.4) to represent the lightly

damped nature of the large-scale flexible structure

(t) + 2 0 Trj(t) + 22 T,(t) = 4T BD dT(t) + C7 BA u(t) (2.5)

where the damping factor is taken to be 0.005 for all structural modes.

Of the more than 1000 modes generated by the finite element model, only the first 195

mode-pairs were retained, corresponding to natural frequencies between 10-5 and 103

radians per second. Modes at frequencies higher than 103 radians per second were

considered both unreliable from a modeling standpoint and well beyond the bandwidth of

interest for controller design.
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By letting the modal variables, r1(t), be the first 195 elements of the state vector x(t),

and taking the second 195 elements to correspond to their derivatives

x(t) r(t) 1

L i(t)J

(2.5) can be converted to the linear state-space form

)iti 0x(t) F 1 dT(t) F 0 u(t)i(t) = [-n2 -2~ + [n .T B LT 4BA 26

42' 2 0 ;' D C BA(2.6)

or

R(t) = A x(t) + B21 dT(t) + B3 u(t) (2.7)

Finally, combining both input terms into a single vector, i'(t)
()=[u(t)

dT(t)

yields

i(t) = A x(t) + [ B3  B21 ]ui(t) (2.8)

or

i(t) = A x(t) + B i'(t) (2.9)

The observation or measurement equation for the BEA feedback problem is

y(t) = C x(t) + 0(t) (2.10)

where y(t) consists of both LOS and segment phasing measurements in radians and meters
respectively, corrupted by an assumed broadband noise term 0(t). Equations (2.9) and
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(2.10) provide an open-loop system model in a form suitable for the linear multivariable

systems analysis and model reduction of Chapters 3 and 4.

2.3 Performance Specifications

Performance objectives for the SBL beam control problem considered consist of

maintaining an overall level of "beam quality", as determined by contributions from beam
LOS jitter and segment phasing effects. In [8] methods are developed for computing the

far-field beam complex amplitude and intensity distributions for a laser beam propagating
from a circular aperture using Fresnel and Fraunhofer diffraction theory. Beam jitter and

segment phasing effects are then accounted for in terms of the degradations they induce in

the far-field intensity distribution.

In [2] it is shown that the far-field intensity distribution for a beam propagating from a

circular aperture closely resembles a Gaussian distribution. If the far-field intensity

distribution is assumed Gaussian, and the effects of beam jitter are also modeled as a
bivariate Gaussian probability density function with independent, identically distributed

components, a closed-form solution for the far-field intensity distribution under the

influence of jitter effects is obtainable. The equations resulting from these assumptions

indicate that beam jitter tends to spread the far-field energy distribution out over a greater

area, while simultaneously reducing the peak intensity of the distribution. Thus, beam jitter

tends to lessen the ability of the laser to concentrate maximum energy on a small target area,
which it must do in order to damage or destroy its target. The key figure-of-merit chosen

for beam jitter effects in this study is the peak intensity attenuation or loss factor, which in

[2] is shown to be

L = (1+4y 0
2 )-1  (2.11)

where ao is the root-mean-square (RMS) angular LOS jitter error in microradians.

The attenuation of peak far-field intensity due to phase aberrations is given by a

quantity called the Strehl ratio, S, [81 which can be approximated by the relatively simple

algebraic formula
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S =- ( I -0.5 G2)2 (2.12)

by defining aO as the RMS phase error in the sense of a spatial average over the assumed

circular aperture of the primary mirror [2]. The phase error can in turn be related to

changes in optical path length via

X (2.13)

where OAI represents the RMS longitudinal or Z direction separations (segment phasing

errors) between primary mirror segment edges.

The total attenuation of peak intensity can then be approximated as the product of the

two loss factors L and S:

1 (2
LT = (_ + 4 ;2) (2.14)

Figure 2.8 depicts level curves of total peak intensity attenuation due to both beam jitter

effects and segment phasing wavefront aberration, as determined from (2.14).
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Figure 2.8 Equal Peak Intensity Attenuation Contours.

The total loss factor defined by (2.14) is the primary system performance measure.

Arbitrarily, a performance specification total loss factor of no less than 0.85 was chosen for
the BEA control system From Figure 2.8 it can be seen that this performance specification
will be met as long as RMS beam jitter error (Yo) does not exceed 0.1 microradians, and

the RMS segment phasing error (GYI) does not exceed 0.15 micrometers. These figures

represent upper bounds on allowable system errors, which the feedback controller must

maintain.

By identifying linear combinations of the state variables that yield LOS and segment
phasing measures and incorporating scaling that reflects the performance specifications

derived above, an error (performance) vector for use in (2.1) can be defined

e(t) = C2 x(t) (2.15)

such that if Ge < 1, then performance goals are met. Equations (2.8) and (2.15) also

provide a one-block system representation that is used for analysis in Chapters 3 and 4.
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To this point, all error variables have been assumed to be random with Gaussian

probability density functions. This corresponds to an assumption that the torque and

measurement noise disturbances are also stochastic, and can be represented as random

Gaussian variables. However, since space-based lasers have not yet been constructed and

tested, the precise nature and/or spectral properties of the disturbances acting on the system

are not well known. Therefore, we will alternatively assume that system performance

specifications can be interpreted in a deterministic manner, by replacing the RMS value of a

vector quantity or signal with its 2-norm, where the 2-norm of the vector signal e(t) is

defined by

II e(t) 1122 = e(t)Te(t) dt = - e(jc0)He(jc0) do)

(2.15)

Under deterministic assumptions, the disturbances can be thought of as broadband noise

with unspecified spectral content, but bounded energy (2-norm). The equivalence of the

stochastic and deterministic optimal control problems implied by assumptions concerning

the nature of the disturbances is demonstrated in Section 34.2.
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CHAPTER 3

Open-Loop System Analysis

3.1 Introduction

In this chapter, the properties of the open-loop BEA system model derived in Chapter 2

are investigated. In Section 3.2, nominal system stability is motivated in terms of

bounded-input, bounded-output arguments, and stability of the BEA model is examined.

Section 3.3 provides a definition of multivariable transmission zeros, and discusses results

of application of a generalized eigenvalue problem (GEP) computation algorithm to the

BEA model. The singular value frequency response and its "principal gain" interpretation

are the main topics of Section 3.4, which concludes the chapter.

3.2 Nominal Stability

As shown in Chapter 2, the input-output time behavior of the open-loop BEA model

can be characterized by a set of first order, constant-coefficient linear differential and matrix

algebraic equations of the form

x(t) = A x(t) + B u(t)

y(t) = C x(t) (3.1)

whi,-h are known tc have th- colution [91
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y(t) = C eAt X(O) + C f eA(t -'t) B u( ct (3.2)

where the first term on the right-hand-side of (3.2) is called the initial condition response,

the second term is labeled the forced response, and the initial time (to) has been assumed to

be zero for simplicity.

Nominal stability for a linear time-invariant (LTI) system described by (3.1) is

commonly defined in terms of bounded input-bounded output (BIBO) stability. That is,
given a bounded input function u(t), the system of (3.1) is said to be nominally stable if the

output y(t) remains bounded for all time after to. Here, a function f is sF id to be bounded
as long as there exists a finite number p such that the norm of the function e ',,jated at t, ft,
is less than or equal to p for all t after tO [10] ( i.e. the function f is bounded as long as

II ft 11* < p for all t > to (3.3)

for a given norm defined over the linear space of which ft is a member). As is discussed in
Section 3.4.2, a commonly employed norm used to bound vector inputs and outputs of
multivariable, continuous time systems is the Euclidean or vector 2-norm defined for the

vector ft as

II ft 112 = -VfHft

where the superscript H indicates the Hermitian (complex-conjugate transpose) of a vector.

As can be seen from (3.2), if ut remains bounded for all t after to, then the time behavior of
y(t) is governed by the matrix exponential term eAt. If we assume that all of the
eigenvalues, Xi, and right eigenvectors, vi, of tle n x n matrix A are distinct, i.e.

A vi = X vi

can be solved for all i = I to n, then the matrix exponential can be rewritten

eAt = V eAt V- 1  (3.4)

40



by letting

V Vl V2 ... Vn

and

eAt = diag (eXit, exit, .... et) (3.5)

If ki is expressed as a complex number,

Xi = 0 + j COd

= (nC+iO;__e(3.6)

where

a = the real part of Xi

Cd = the imaginary part of Xi

= the damped natural frequency associated with the ith state

j= -r

on= the undamped natural frequency associated with the ith eigenvalue

= the damping ratio of the ith eigenvalue

then (3.2)-(3.6) mandate that the eigenvalues of the A matrix have negative real parts in

order for the matrix exponential to decay with time and yield a bounded system output.

Since the eigenvalues of the system A matrix are also the poles of the open-loop

transfer function
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G(s) = C (sI - A) -I B (3.7)

the system of (3.1) is said to possess BIBO stability, if and only if all the system poles

have negative real parts.

One useful way of presenting system stability characteristics graphically, called an

open-loop pole plot, results from plotting the system eigenvalues in the complex plane.

Any unstable poles immediately show up in the right half plane of such a figure. The
further left of the imaginary (or jo-) axis stable system poles are, the faster the exponential

of (3.4) decays, and the "more stable" such poles are said to be. System poles lying
directly on the jo-axis are said to be marginally stable, producing a response that neither

grows nor decays with time. Also, since the distance from any pole to the origin is

4- = yo2 + 0 2

and since the sine of the angle, 53,rnade between a straight line connecting the origin and

any pole and the jco-axis is

sin(P) (on

the undamped natural frequency and the damping ratio of any pole is easily determined

from the pole plot.

An open-loop pole plot for the BEA system model derived in Chapter 2 appears in

Figure 3. 1. As can be seen from the figure, the open-loop BEA model is nominally stable

since all its poles lie to the left of the imaginary axis. Also evident from Figure 3.1 is the

uniform damping assigned to all structural modes, which produces the straight-line pattern

of poles extending away from the origin at a constant angle of 0.005 radians (0.286
degrees) from the jco-axis. Note the unequal scaling on the real and imaginary axes, which
makes the open-loop poles appear farther left of the jco-axis than they actually are.
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Figure 3.1 Open-Loop Pole Plot (Note Scale Differences).

3.3 Multivariable Transmission Zeros

In a single-input, single-output (SISO) setting, transfer function zeros are defined as
frequencies at which a non-zero input produces an identically zero system output. This
concept of an "input-absorbing frequency" [3] is generally maintained when defining a
system zero in a multi-input, multi-output (MIMO) setting. The system of (3.1) is said to
possess a multivariable transmission zero at the frequency, zk, if there exists an initial
condition, x0 , and a control vector, Uk, not both zero, such that if

u(t) = uk ezkt

then

y(t) = 0 for all t > 0

A consequence of this definition is that the open-loop transfer function G(s) loses rank
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when evaluated at Zk, and, therefore, so does the Rosenbrock system matrix [71 given by

R(s) l [s-A -B (.8-C 0 1(3.8)

Thus, as long as the state-space realization of the system (3.1) is minimal 2 and square (has

the same number of inputs and outputs), then the multivariable transmission zeros of the

system can be located by solving the generalized eigenvalue problem (GEP)

Mv = zkNv (3.9)

where

C 0

and

Note that if the open-loop transfer function has a non-zero feedthrough term, D, then this

matrix would replace the zero 2-2 elements of R(s) and M above. If the system being

considered is not minimal, it must be made so before this approach may be applied. Also,

this algorithm may be applied to non-square systems oy augmenting the system matrices
with sufficient rows or columns containing random entries to "square-up" the system,

iterating the GEP, and identifying the invariant zeros [11].

The presence of multivariable transmission zeros in the open-loop system is important

to detect, for three main reasons. The first reason is that zeros at the same locations as

open-loop poles may result in pole-zero cancellations, creating an uncontrollable or

2 The term minimal is used to describe a state-space realization that is both completely controllable

and completely observable (See Section 4.2 for definitions of these terms). The Rosenbrock system matrix

of a non-minimal realization loses rank when evaluated at frequencies corresponding to

uncontrollable/unobservable poles, as well as when evaluated at zero frequencies.

Uncontrollable/unobservable poles must therefore first be removed before the generalized eigenvalue

problem test can be said to yield system zeros.
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unobservable system model3. To motivate the second reason, consider Figure 3.2, which

shows the closed-loop transfer from u to y, with output disturbances (measurement noise)

present. The closed-loop transfer function from 0 to y (broken at the plant output) is cailed.

the output sensitivity function, So0(jo), and is given by the relation

So(jo) = (I- G(jo) K(jo))-1  (3.10)

The presence of an open-loop right-half plane (non-minimum phase) zero imposes certain

limitations on achievable performance of a system under feedback, expressed as a weighted

integral constraint on the logarithm of the maximum singular value of So(jo) [12],

f log al [So(jco)] W(zo) do > 0
Jo (3.11)

where W is the weighting function

W(z,Co) = x + x
X2 + (yo x2 + (y + o)

for a complex zero at z = x + jy. In combination with the multivariable generalization of the

well-known Bode integral constraint on system output sensitivity for open-loop stable

systems [13], n
log ai [Soco)] do = 0

(3.12)

(3.11) and (3.12) indicate that designing to make Sojo)) "small" in certain frequency

ranges forces So(jco) to be "large" in other frequency bands. For open-loop stable systems

with no right-half-plane zeros, the area under the log So(jOc) singular value curves

indicating output disturbance attenuation equals the area under the log So(jo) singular value

curves indicating output disturbance amplification. For non-minimum phase systems, the

area of output disturbance amplification may be greater than the area of output disturbance

attenuation. These integral constraints on system output sensitivity provide useful insight

3 Reference Section 4.2 for definitions of controllability/observability.

45



into what kind of limitations on achievable performance to expect prior to attempts at

compensator synthesis. The third and final reason why it may be important to identify

MIMO zeros is that the presence of non-minimum phase zeros may adversely affect the

system transient response.

0

-I G(s) _"_40 -- y

K(s) do-

Figure 3.2 Closed-Loop Transfer from u to y
(with sensor noise present).

Although the open-loop system of (3.1) has 24 inputs and 29 outputs (27 segment

phasing and 2 LOS), in Section 5.3.3 a requirements analysis process is carried out to

reduce the number of measurements to 8 (6 segment phasing and 2 LOS). Since the 8

measurement model is the one actually used for design, this is the system in whose zeros

we are interested; and, since this system's transfer function is non-square (8 x 24), the

algorithm of augmenting 16 rows of random entries twice and iterating the GEP described

above was attempted. This method failed to identify any MIMO transmission zeros.

Therefore, the 16 rows of random entries were changed to rows of zero entries, yielding an

open-loop system of the form

rYC FC(sI - A)' B][yj= A~ -nU

Yf 0(sI- A)-I B (3.13)

where yf is a fictitious output identically equal to zero. The system of (3.13) is now square
rind loses rank only where the open-loop design model loses rank. The MIMO

transmission zeros of (3.13) are therefore equal to the zeros of (3.1), and can now be
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computed via solution of the GEP. The 96 multivariable transmission zeros obtained by

solving the GEP for the system of (3.13) are plotted in Figures 3.3 and 3.4.
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Figure 3.3 Open-Loop Multivariable Transmission Zeros.
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Figure 3.4 Open-Loop Multivariable Transmission Zeros

(Close-up About the Origin).
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As can be seen from the figures (especially Figure 3.4), many of the MIMO transmission

zeros are clustered along the jc0-axis, creating the possibility of near pole-zero

cancellations. A small number of zeros are located on the real axis, and the presence of

right-half plane zeros in the design model is also obvious.

3.4 Singular Value Frequency Response

3.4.1 Definitions

As mentioned in Section 3.2, a finite-dimensional LTI system with state-space

representation

i(t) = A x(t) + B u(t)

y(t) = C x(t)

has an open-loop transfer function

G(s) = C(sI- AY1 B

which, when evaluated at s = jco, yields the frequency dependent behavior of the system.

In a SISO system, a single gain and phase at each frequency is sufficient to characterize the

relation of input to output. In a multivariable setting, however, a single gain is not enough,

and the singular value frequency response is required.

The singular value frequency response of a system is obtained by computing the
singular value decomposition (SVD) of the complex matrix G(jc) over the frequency range

of interest, where the SVD of the m x n matrix G of rank k is defined

G = UEVH (3.10)

and U is an m x m unitary matrix with columns corresponding to the left singular vectors of

G, ui; V is an n x n unitary matrix with columns corresponding to the right singular vectors
of G, vi; and Z is an m x n diagonal matrix of the form
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01

ak 0
O

0

where the ai are the strictly positive singular values of matrix G in order of decreasing

magnitude. The elements of the singular value decomposition are given by

GH G vi = Xi vi

G GH ui = Xi ui

and

ai (G) = -/X. (GH G) = /Xi (GGH)

where superscript H again represents the Hermitian of a matrix, and i runs from I to k.

3.4.2 Importance of Singular Values to LTI Systems

The importance of the singular value decomposition to linear systems lies in its

interpretation in the context of induced matrix norms. If I1u112 denotes the Euclidean or
vector 2-norm of a complex-valued vector u with n elements,

11 u 112 = TUHU (3.11)

then the induced matrix norm of G over the vector space spanned by all n element complex-

valued vectors, Cn , is defined as

1G I, sup II G u 112
U 0 lIU112 (3.12)

49



where the notation sup is short for supremum, representing a least upper bound. By
definition, the induced 2-norm of G over Cn equals the max mum vector 2-norm
amplification or gain experienced by any n element vector acted upon by the matrix G.

If we restrict ourselves to input vectors with unity bounded vector 2-norms, 1 u 112 < 1, then
(3.11) becomes

II G Ili2 = sup 1 G u 112
II U 112 ! 1 (3.13)

Utilizing (3.9), (3.13) can be written

I G Ili2 = sup IU VHu 112
It u 112 5 1 (3.14)

which is maxim:7ed by choosing u to equal the first right singular vector of matrix G, vi,
* so that

11 G Ili, 11I U Y- 11I2

0l (3.15)

or

(1

II G Ili, = II U 0 112 = II U GI112

0 J(3.16)

Finally, invoking the definition of the vector 2-norm yields

II G IIi2 = \/(ul ar)-'(uj 1 ) = = (u/'Hu() = a (3.17)

Thus, the maximum singular value of G, a1, (corresponding to the maximum eigenvalue of
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GHG or GGH ) equals the induced matrix 2-norm of G over Cn, which is also equal to the

largest possible 2-norm of y since y equals G times u.

Replacing sup in (3.12) with inf (short for infimum, denoting a largest lower bound) also
allows the minimum gain of G to be expressed in terms of its minimum singular value, ak,

(corresponding to the smallest eigenvalue of GHG or GG H ).

Thus, in a fashion analogous to SISO systems, the effects of a transfer function matrix

acting on an input vector at a given frequency can be characterized by a range of "principal

gains" [7], bounded above and below by the maximum and minimum singular values of the

transfer function matrix, respectively. Furthermore, the right singular vectors of matrix G
correspond to input "directions" (combinations of elements of the input vector, u) which

are simultaneously amplified or attenuated (as dictated by the associated singular value) and
mapped by G to output directions governed by the left singular vectors. By analyzing the

SVD of the transfer function matrix at all frequencies, the principal gains induced by certain
combinations of inputs, and the resulting outputs, can thus be discovered. Due to this
property, the singular values of a matrix, and in particular its maximum singular value, are

the dominant quantities of interest in the analysis and design of LTI feedback systems.

Indeed, the performance goals discussed in Chapter 2 can be conveniently stated in

terms of an allowable upper bound on the maximum singular value of a certain matrix

transfer function, due to this induced vector 2-norm property. In Chapter 2, performance
objectives were stated as maintaining the RMS or 2-norm value of the scaled error vector
below one, despite the presence of broadband vibrational disturbance torques and

measurement noise. By combining the two disturbances into a single disturbance vector

and scaling so that W1d112 1 I, performance goals can be achieved by requiring the closed-
loop transfer function from d to e, Ted(s), to have maximum singular value less than one at

all frequencies where the disturbances act, or more conservatively, at all frequencies. The
infinity-norm of a transfer function is defined as the maximum singular value of that

transfer function over all frequencies, i.e.,
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iIT(s)IL = sup ol [T (jco)]Wo (3.18)

and, therefore, performance requirements for the SBL example considered reduce to

ensuring

IITed(s)IIl, - 1 (3.19)

for the appropriately scaled system with deterministic, bounded energy disturbances.

As mentioned in Section 2.3, the infinity-norm performance criterion of (3.19) applies

equally for the system with assumed zero-mean, stationary stochastic disturbance inputs of
bounded variance (standard deviation). To see this, consider the definition of the 2-norm

squared (variance) of a stochastic vector signal e

II e 1122 = T2 = E ( e(t)Te(t) dt) E ( e(O)Htejo) do)
0 f (3.20)

which is the same as the definition of the 2-norm squared of a deterministic vector signal
given in Section 2.3, except for the addition of the expectation operator, E. Making use of

the properties of the matrix trace operator, abbreviated tr, and the linearity of the

expectation operator, (3.20) becomes

al, = E " tr(e(co)e(Jco)H)dco
27 f(3.21)

Using the fact that e = Ted d (and dropping the frequency dependent notation for

convenience), (3.21) can be written

(T2 2-L E tr(Ted(Td)H)do = -E tr (TeddHT(,dH)dwo
(3.22)

And, since tr (AB) = tr (BA),
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oY2= E tr (T HT,,d dddO
(3.23)

The next step in the derivation involves the following lemma, which is first stated then

proven.

Lemma: tr (AB) < a 1 (A) tr (B), given A = AH

Proof: Since A = AH, A = U y UH (utilizing the SVD of A)

then tr(AB) = tr(UZUHB)

= tr (Z UH B U)

< oI(A) tr(UHBU)

< a1 (A) tr(BUUH)

< a I1 (A) tr (B), Q.E.D.

Now, since TedHTed = (TedHTed)H, the above lemma applies to (3.23), and using the

definition of the infinity-norm (3.18), (3.23) can be written

- 2±y2: 1E f 1Td 112 tr(ddH) dc,2n -(3.24)

or

Ye2  ! - T1 I 2- E " tr (ddH)d = IIT 1I ad

(3.25)

From (3.25), it is obvious that if the disturbance variance is unity bounded, then the error

variance will be unity bounded only if
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II Td I11 ! 1 (3.26)

and the same may be said for the input and output RMS values. Thus, the deterministic

and stochastic optimal control problems result in an equivalent performance constraint on

the infinity-norm of the closed-loop transfer function, as long as the disturbance and error

variables are appropriately scaled (or alternatively, as long as the scaling on the disturbance

and error vectors is interpreted correctly).

3.4.3 Open-Loop Singular Value Frequency Responses

In this thesis, we shall be primarily interested in three open-loop singular value
frequency response curves. The first describes the transfer of the nominal plant from the

controls, u, to the measured outputs, y. This transfer function is important because it

portrays how the system actuators affect the outputs, giving some indication of how much
we can hope to improve performance through feedback. The second open-loop transfer

function of interest is that which relates the combined input and disturbance vectors to the

scaled LOS and segment phasing performance variables. This transfer function will
provide the basis for the model reduction techniques considered in Chapter 4. The third

frequency response of interest is the open-loop transfer from the disturbance torques to the

scaled performance variables. The frequency response of this transfer function yields

open-loop performance in terms of rejection of the torque disturbances, upon which we
hope to improve via feedback control. Figures 3.5, 3.6, and 3.7 show the singular value

frequency response of these three transfer functions.
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Figure 3.5 Open-Loop Singular Value Frequency Response from Controls to Outputs.
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Figure 3.6 Open-Loop Max. Singular Value Frequency Response from

Combined Controls and Disturbance Torques to All Errors.
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Figure 3.7 Open-Loop Max. Singular Value Frequency Response from

Disturbance Torques to All Errors.

The primary system characteristic displayed by the above plots is the separation of the

open-loop dynamics into two groups of lightly-damped poles and zeros, as evidenced by
the tightly grouped sequences of peaks and valleys seen in the figures. The first group,
running from about 4.5 to 30 radians per second, corresponds to the structural dynamics of

the primary mirror segment force reaction structures and the secondary mirror. The higher
frequency second grouping, running from about 170 to 500 radians per second, represents

the bending modes of the reaction structures and the graphite-epoxy support truss.

Two other features of the open-loop singular value frequency response plots are also

noteworthy. Evident in the low-frequency region of Figure 3.7 is a 40 dB per decade roll-

off induced by the rigid body modes of the entire BEA structure, while such a roll-off is
clearly lacking in Figures 3.5 and 3.6. This suggests that the transfer from u to y and e is
relatively unaffected by the rigid body modes, a fact that will be exploited later to simplify

the design model. Also, from Figure 3.7 it can be seen that the open-loop performance
transfer function displays disturbance amplification (maximum singular value greater than 0

dB) for all frequencies less than -50 radians per second, and has a maximum singular value
upper bound of 59.0 dB in the frequency range shown. To provide insight into how the
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torque disturbances affect the segment phasing and LOS outputs individually, Figures 3.8
and 3.9 show the open-loop transfer maximum singular values from dT to esp and elos,
respectively. The two groups of lightly damped poles and zeros are again displayed in the
figures. Also, it can be seen that the open-loop transfer from the disturbance torques to the
segment phasing errors is 10-15 dB greater than the transfer to the LOS errors.
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Figure 3.8 Open-Loop Transfer from Disturbance Torques to Segment Phasing Errors.
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Figure 3.9 Open-Loop Transfer from Disturbance Torques to Line-of-Sight Errors.

In this section, several important characteristics of the open-loop model have been

illustrated. The lightly damped nature of the system model, and the large number of near

pole-zero cancellations so typical of large flexible structures has been observed.

Additionally, Figures (3.7-3.9) illustrate the unsatisfactory nature of open-loop system

performance, forming a baseline upon which the closed-loop system must improve. Figure

3.5 and the open-loop pole and zero plots provide insight into the complex nature and

extreme dimensionality of the system model. Due to this high dimensionality, software and

computation time limitations come into play, preventing compensator synthesis from

proceeding directly. Instead, the open-loop system model must first be somehow reduced

in size. This motivates the topic of model reduction, which is considered next in Chapter

4.

58



CHAPTER 4

Model Reduction

4.1 Introduction

As mentioned in Section 2.2, the full-order model (FOM) of the SBL BEA given by

(2.8), (2.9), and (2.14) is characterized by 390 states, 26 inputs (24 actuators and 2

disturbances), and 29 outputs (27 segment phasing and 2 LOS). Due to the numerical

difficulties and excessive computation times inherent in analysis and design with an FOM

of such large dimension, it is desirable to reduce the state-dimension of the system model,
while simultaneously preserving the relationships between inputs and outputs. Analysis

and design of feedback controllers can then be expediently carried out with the sufficiently

accurate reduced-order model (ROM), rather than with the cumbersome FOM.

Mathematical techniques for the reduction of model order are now considered. In Section

4.2, open-loop system controllability/observability issues are addressed via gramian-based

techniques. Coverage of this topic leads naturally to a survey of various model reduction

methods, which are discussed in Section 4.3. Finally, Section 4.4 illustrates application of

two selected model reduction techniques to the full-order BEA model, and presents

characteristics of the selected reduced-order open-loop system model.

4.2 Controllability/Observability Issues

The concepts of controllability and observability are of fundamental importance to

output feedback control of LTI systems like the BEA model of (3.1). A state-space

realization pair (A,B) like that of (3.1) is said to be completely controllable if and only if it

can be transferred from the zero state at any initial time to to any terminal state x(tf) = xf

59



within a finite time tf - tO [9]. It can be shown via linear systems theory [141 that for stable

systems, an explicit test for system controllability is to verify that the controllability

gramian, P, defined by

P = eAt B BT eA t dt

is non-singular.

Similarly, a state-space realization pair (A,C) like that of (3.1) is said to be completely

observable if, given measurements at some time y(tf), the state of the system at to < tf can

be uniquely reconstructed [9]. Non-singularity of the observability gramian,

Q =f eTt CT C eA t dt
(4.2)

is necessary and sufficient to guarantee system observability for stable systems [ 141.

A state-space realization of an LTI system that is both completely controllable and

observable is said to be minimal. Minimality of the open-loop plant is required for the

state-space control system design algorithms considered in Chapter 5, and was also

necessary for the MIMO transmission zero identification Algorithm discussed in Section

3.3. Furthermore, the degree of controllability/observability of an individual system state

is directly proportional to the magnitude of that state's effect on system singular value

frequency response. Quantifying the controllability/observability of individual system

states provides an efficient basis for model reduction, as will be seen in the next section.

4.3 Survey of Model Reduction Techniques

A thorough and systematic treatment of reduced-order model development was

published by Moore [15]. The technique proposed by Moore, which is often called balance

and truncate (B&T), uses the state-space representation (A,B,C) of the plant that describes

the relationship between the input, states, and measurements in which the steady-state

controllability and observability gramians (note the particular choices for to and tf)
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P = eAt B BT eATt dt

Q = eA t CT C eAt dt

are diagonal and equal. The diagonal elements of the gramians, referred to as the Hankel
singular values (HSVs) [16], provide the basis for model reduction. Large HSVs

correspond to states that are easily controlled and observed, while small HSVs define states

that are difficult to control and observe. Thus, the state-space model can be partitioned into

strongly and weakly controllable/observable states, and the subspace of weakly
controllable/observable states may be deleted. Controllability and observability therefore

play equal roles in determining which individual states will be retained in the B&T ROM,

and as long as the HSV of the last state retained is nonzero, the B&T ROM is guaranteed to
be both controllable and observable. Extensions of Moore's B&T method are made in

[ 17], wherein computational methods independent of plant minimality are developed, and

in [ 161 the approximation error is bounded in terms of the Hankel singular values.

A more formal approach to model reduction is taken in [161, wherein the optimal

reduced-order model of fixed dimension is sought which minimizes the Hankel-norm (i.e.,

the maximum HSV) of the approximation error. The solution to the Hankel-norm model

reduction problem is significantly more complex than that of B&T; however, it may

provide significantly superior results.

The two methods mentioned above allow characterization of the absolute modeling

error bounds in the ROM. An alternative that provides a relative error bound is the so-

called balanced stochastic truncation (BST) method discussed in [181. The positive aspect

of this technique is that it provides a more meaningful error criteria for model reduction.
However, its weak point is that it is only applicable to square plants, and therefore, its use

is somewhat limited.

All of the model reduction techniques discussed above are applicable to open-loop

stable plants only. In [191 a generalization of B&T called the fractional balanced reduction

(FBR) method is described that can be applied to open-loop unstable plants. Combining
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this technique with the methods presented in [181 for addressing nonminimal plants offers

the direct capability for performing model reduction on arbitrary plants.

Since the finite element model is originally derived in modal form, the technique of

modal truncation (MT) can be applied directly to (2.4) to reduce the order of the system

model prior to obtaining a state-space realization. This is accomplished by simply
eliminating very high natural frequency modes from the system Tl(t) vector, truncating

corresponding columns and rows from the 0 matrix, and deleting corresponding rows of

the c1TB matrix products. However, the reduced order model one obtains by doing this

has no guaranteed properties with regard to controllability/observability.

Due to computational requirements, application of model reduction to the 26-input, 29-

r ,tput, 390-state SBL model described in Section 2 requires a prudent choice of model

reduction techniques. Since the SBL BEA model is open-loop stable due to the light

damping of all structural modes, any of the above methods except BST may be used (since

the open-loop plant is not square). However, FBR is not a wise choice, because the
technique is a computationally costly generalization of B&T for unstable systems. B&T is

attractive because infinity-norm error bounds for all ROM orders are computed by

calculating the full-order plant's controllability and observability gramians once, and

reduced-order models of any order are subsequently obtained by simple matrix

multiplications of elements taken from the gramians' singular value decompositions.

Although superior ROMs may be obtained by Hankel-norm minimization, the method is

substantially more computationally intensive than B&T and requires all computations to be

performed for each order ROM desired. Finally, the last technique discussed, modal
truncation, is attractive due to its ease of application, but may not produce a minimal model.

4.4 Application of Model Reduction Techniques

In light of the above issues, a trade study using only the modal truncation and B&T

techniques was conducted in order to obtain a suitable ROM for the jitter and segment

phasing control system. In Figure 4.1, a plot of additive modeling error theoretical upper

bounds versus ROM order, as measured by the infinity-norm, is given for the B&T

method. A significant knee in this plot is seen at order 12 where all six rigid body modes

(describing rotation and translation of the entire BEA) are included in the ROM, and

another pronounced knee is found for a ROM of 34 modes (68 states).
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Figure 4.1 B&T ROM Additive Error.Upper Bounds.

In balancing the full-order (390-state) system model via Moore's algorithm, machine
precision resulted in truncation of the state dimension to 120 states. Therefore, the 120-

state B&T ROM was judged to be sufficiently accurate to represent the full-order model,
and it was adopted as the "truth" model for the open-loop system. Based on this fact and
the information in Figure 4.1, reduced-order models were derived for a finite number of
ROM dimensions ranging from 56 to 100 using both B&T and MT methods, and the

infinity-norm of the actual additive error due to model reduction

II G - Gk 11_ = sup Ce (jcOI - A) 1 Be (4.4)

where

G = the open-loop plant truth (120-state B&T) model, represented by (A, B, C)

Gk = a kth order ROM approximation to G, represented by (Ak, Bk, Ck)
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0OAk

Be = Bk
A[]

= [C -Ck]

was then computed. A plot of these actual error infinity-norms versus ROM order is

plotted in Figure 4.2, along with the bounding data from Figure 4.1.
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Figure 4.2 Infinity Norms of Computed Additive Errors vs ROM Order.

As can be seen from the figure, the B&T method produces consistently smaller additive

error infinity-norms than the MT method. Also, since the B&T reduced-order model is

guaranteed minimal (as long as the HSV of the last retained mode is greater than zero), the
B&T technique produces the ROM of choice. Figure 4.2 indicates a significant decrease

(35 dB) in additive error infinity-norm when going from a 66 to a 68-state ROM, while the
error curve remains basically flat for ROM orders beyond that point. This suggests

employing a 68-state ROM for analysis and design purposes. To ensure that the 68-state
ROM is minimal, the HSVs of the FOM should be checked. A plot of Hankel Singular
Values versus state dimension appears in Figure 4.3. As can be seen from the figure, the
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HSVs remain fairly constant in magnitude up through the 68-state level, after which the

HSV curve drops sharply off. This indicates that states beyond the 68th state are

considerably less controllable/observable than the 68th state, and can be truncated without

severely degrading the input/output properties of the ROM. Also, since the 68th state HSV

is greater than zero, the 68-state ROM is guaranteed to be minimal as desired.
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Figure 4.3 Hankel Singular Values vs BEA Model State Dimension.

Recalling that the input for this model reduction study consisted of the combined

actuators and torque disturbances, it was believed prudent to check on the controllability
properties of the 68-state ROM from each input separately. Also, since the HSVs combinc

the effects of controllability and observability, it was deemed of interest to investigate

observability of the ROM separate of controllability. Examination of these individual

steady state controllability and observability gramians reveals that while the six rigid body
modes are very observable in the system outputs, they are almost totally uncontrollable

from the system inputs (segment position actuators). They are, however, strongly

excitable from the torque disturbances, and this combined with their high level of

observability is enough to yield the large HSVs attributed to the rigid body modes in Figure
4.3. For purposes of control, though, the rigid body modes remain unaffectable by the

segment position actuators. Since satellite attitude contro' and propulsion systems exist to

regulate the rigid body motion of the BEA, uncontrollability from the system actuators does

not present any problem, and the rigid body modes can be removed from the beam
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jitter/segment phasing system model. Doing so results in a 56-state ROM of the SBL BEA

for control system design purposes. The maximum singular value frequency response

plots for the FOM (combined actuator and disturbance inputs) and ROM with the 12 rigid

b'xiy states removed appears in Figure 4.4. As is evident, application of the B&T method

gives a RCM that includes the important low frequency structural modes, while neglecting

the much higher frequency bending mode dynamics. Also evident is the removal of the

BEA rigid body modes, as there is not now 40 dB per decade roll-off in the low-frequency

region (compare with Figures 3.7-3.9).
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Figure 4.4 Full-Order and 56-State Reduced Order Model

Maximum Singular Values from i to e

(Rigid Body Dynamics Removed).

Figures 4.5-4.7 below show complex plane plots of the open-loop poles and MIMO

transmission zeros for the 56-state, 8-output BEA model that is used for control system

design in Chapters 6 and 7. Figure 4.5 verifies that the high-frequency bending mode

dynamics of the BEA have been truncated in the 56-state ROM, while the low-frequency

structural modes have been preserved. Also note that the highest natural frequency retained

in the 56-state design model is on the order of 30 radians per second. Figures 4.6 and 4.7

indicate that reducing the model order from 120 to 56 via the B&T method eliminates many
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of the high-frequency zeros seen in Figure 3.3, but preserves the pattern of low-frequency

zeros observed in the truth model.
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CHAPTER 5

A Methodology for Robust Control
System Synthesis

5.1 Introduction

This chapter presents a methodology for robust control system design for the SBL BEA

employing the reduced-order model of Chapter 4. Section 5.2 formulates a framework for
robust control system design in which stability robustness constraints and performance

objectives can be met by bounding the infinity-norms of two closed-loop transfer
functions. The Small Gain Theorem is introduced as the tool for verifying stability

robustness, while compensator design can be accomplished utilizing various methods.
Section 5.3 addresses several candidate synthesis techniques: H2 optimal control, I-,,

optimal control, and H2/Ho, loop-shaping design techniques, and all necessary conditions

and equations for compensator design are presented.

5.2 Stability Robustness via the Small Gain Theorem

Model reduction introduces errors into the design process that must be accounted for in

system stability and performance analysis, and, hence, robust control techniques that
ensure both stability and performance in the presence of modeling errors are required.
Analysis with the well-known Small Gain Theorem (SGT) [7] in combination with an
appropriate controller design technique such as H2 or H,. provides a framework for robust

control design, by allowing both performance requirements and stability robustness
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constraints to be simply posed in terms of bounds on infinity-norms of certain transfer

functions. For the system depicted in Figure 5.1, the Small Gain Theorem states that the
nominally stable plant M(s) is stable for all stable perturbations A(s) if IIM(s)lIIlIA(s)II, < 1

(i.e., the loop gain is small).

A(s) V2

Figure 5.1 Topology for the Small Gain Theorem.

Note that the robustness criterion stated depends only on the magnitude of the closed-loop
transfer, and not on any information related to system phase characteristics. Therefore, the

Small Gain Theorem requires that system errors or uncertainties be bounded above in a

magnitude sense only. This condition greatly simplifies modeling of system uncertainties,

but it also creates conservatism in the assessment of system robustness.

Consider Figure 5.2, where G(s) represents the open-loop plant ROM transfer matrix,
AM(s) is the multiplicative error at the plant output due to model reduction, u represents the

actuator commands, and y is the measured LOS and segment phasing error. Further,
assume without loss of generality that IIAM(s)IIo < 1.4 The block diagram of Figure 5.2

can be augmented to include disturbance and performance signals, d and e respectively, as

shown in Figure 5.3, where it is assumed that the disturbance is bounded by unity (i.e.,
Id112 < 1) and nominal performance specifications are met if lle112 s 1 (as discussed in

Sections 2.3 and 3.4).

4 Scaling of Am is easily incorporated into the plant by augmenting frequency dependent weighting

functions to the system matrices.
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Figure 5.2 ROM with Multiplicative Modeling Error.
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Figure 5.3 Augmented Plant (3-Block Form).

The nominal 3-block open-loop system of Figure 5.3, G(s), can then be represented by the

state-space realization

i(t) = A x(t) + B1 w(t) + B2 d(t) + B3 u(t)

z(t) = C1 x(t) + DI, w(t) + D12 d(t) + D13 u(t)

e(t) = C2 x(t) + D21 w(t) + D22 d(t) + D23 u(t)
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y(t) = C3 x(t) + D31 w(t) + D32 d(t) + D33 u(t) (5.1)

or, more compactly,

A B1  B2  B3 1
C1  D11  D12 D13

C2  D21 D= 2
C3  D31 D32 D33

Since the infinity-norm is the operator norm that relates 2-norm bounded inputs to 2-
norm bounded outputs (or RMS of input to RMS of output), an H. performance

optimization problem may be constructed to minimize the infinity-norm of the closed-loop

transfer from d to e, and if this quantity can be made less than or equal to one (implying

nominal performance specifications are met), then stability robustness may be ensured via
the SGT by verifying that IIM(s)II lIA(s)II_, < 1. This may be restated more clearly by

considering Figure 5.4, which illustrates the closed-loop transfer function from w and d to

z and e, obtained from substituting u = Ky into (5.1).

Z

d T (s) e

Figure 5.4 Closed-Loop Transfer Function.

The closed-loop transfer function, T(s), can be partitioned such that

[ [T 1 1 (s) T 12 (s) I[wI

e [ (s) T22(s) LdI

and, in the context of the framework discussed above, nominal system performance

specifications are then met as long as
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11T 22(s)Io_ < 1

and stability robustness is ensured if

IiT11(s)I_ < 1

Note that the framework for robust control system design presented in this section

addresses only stability robustness issues, and allows no general provisions for testing the

robustness of performance. Performance robustness, or the guaranteeing of system

performance in the presence of uncertainty, is not specifically designed for in this thesis.

Performance robustness of the final design selected is, however, independently assessed in

Chapter 8, for certain known types of system errors.

Output feedback controller synthesis techniques suitable for use in conjunction with the

stability robustness test of the Small Gain Theorem are now addressed.

5.3 Compensator Design Techniques

5.3.1 Introduction

Three multivariable feedback design methodologies suitable for use in the framework of
Section 5.2 are now considered: H2 optimal control, H,,. optimal control, and H2/H..

loop-shaping techniques. Multivariable feedback design is conveniently discussed in terms

of Figure 5.3 and its associated state-space realization (5.1). Also, certain assumptions

regarding the structure of (5.1) allow formulation of the various controllers to be greatly

simplified. The following conditions on the matrices of (5.1) are assumed to hold in the

succeeding discussion of compensator designs:

1) D22 = 0

2) D33 = 0

3) 3 [C2 D23] = [0 p2I]
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4) B2 D32T = 0

where p is a scalar.

Assumption 1 simply states that there is no direct feed-through of the disturbance to the

error which we are trying to minimize so that 1T22(s)12 is finite, while assumption 2

indicates that the open-loop plant is strictly proper. Assumption 3 implies that D23 and C2

are orthogonal, so that the error vector includes a non-singular penalty on u that is linearly

independent of the penalty on the state variables. The constant penalty on all the controls

guarantees that D23 is of full column rank, and prevents the solution from requiring infinite

control effort. Finally, assumption 4 is a consequence of lumping both process and
measurement noise into the disturbance vector, and assuming they act independently on the

state dynamics and measurements, respectively. The above assumptions are fairly standard
in conventional H2 control theory, and will be seen to be non-restrictive in the H,, case.

5.3.2 H2 Optimal Control

In the above context, H2 optimal control is a design methodology for selecting an
output feedback compensator which minimizes the 2-norm of the closed-loop transfer

function from d to e. The H2 problem can thus be posed as the determination of a dynamic
compensator K(s) such that

K(s) = inf 1IT22(s)II 2 _ inf f ( trace [T22(jt)H T2(jw)] dco
K K \ fo 1(5.2)

The H2 problem is equivalent to a Linear-Quadratic Gaussian (LQG) design problem with

cost function

j= lim Ef e(t)T e(t) dt
T---)oo (5.3)

where E is the expectation operator, the T inside the integral represents the transpose

74



operator, and the disturbances are all assumed to be uncorrelated, stationary, zero mean

white Gaussian noise processes with unit intensities.

As per the LQG separation principle, by solving two independent matrix algebraic

Riccati equations (AREs):

Full-State Feedback ARE

ATp + PA - PB3(D 2T_I'B3TP + C2TC 2 = 0 (5.4)

Kalman Filter ARE

EAT + Al - Ic3ID32TD 3 i2) 'C 3  + B2B2T = 0 (5.5)

and computing the LQ and Kalman gains, respectively

KIq = (D23TD23) B 3Tp

Kf = .C3D32TD32) "1

the H2 optimal controller is obtained in the form of a model-based compensator

K (s) = -Kiq (sI - A + KfC3 + B3KIq)1 Kf (5.6)

or

K(s) =A-KfC3 -B 3Klq Kf
- jj 0

which has dimension equal to the order of the plant due to the model-based nature of the

compensator.

Unique positive-semidefinite solutions to (5.4) and (5.5) exist and provide guaranteed

closed-loop nominal stability as long as (5. 1) is both stabilizable and detectable, meaning

that any uncontrollable/unobservable states are asymptotically stable [7]. This implies that

75



the open-loop plant should be represented by a minimal state-space realization prior to

design via H2 optimal control.

5.3.3 H** Optimal Control

As its name implies, H,. optimal control is a methodology for selecting a feedback

compensator which minimizes the infinity-norm of the closed-loop transfer function from d
to e. The H . problem can thus be posed as the determination of a dynamic compensator

K(s) such that

K(s) = inf UT22(s)11. = inf Sup 01 (T2200))
K K 0 (5.7)

A two-Riccati equation state-space algorithm described in [20] provides an efficient
solution to the H., optimization problem, which is commonly referred to as y-iteration. In

this procedure, y represents an upper bound on the infinity-norm of the closed-loop transfer

from d to e, which, as discussed in Sections 2.3, 3.4, and 5.1, must be less than or equal

to one in order to achieve the specified performance objectives. In order to ascertain what

closed-loop infinity-norm is attainable, a starting value of y is assumed; it is then attempted

to solve the H.. Riccati equations:

State-Feedback ARE

XA + ATXO. - XQX- + C2TC 2 
= 0 X. - 0 (5.8)

where

Q = B3(D23TD23) " B3T 1 B2B2T

Output Injection ARE

Y AT + AY_. - Y_.RY_ + B2B2T = 0 Y_ > 0 (5.9)

where
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R = C 3  32D32T) 1C3 - IC 2TC 2

and acceptance of the assumed y value is conditional upon the two Riccati equation

solutions being stabilizing, as per the following conditions:

1) A - QX** is stable

2) A - Y0*R is stable

3) p(XY) < ? (5.10)

where p(.) represents the spectral radius of the indicated matrix. Given a minimal system

realization, if a stabilizing solution for the assumed value of y cannot be obtained, then the

assumed y value is too small, and no stabilizing compensator can achieve that level of

performance; y must then be increased. If a stabilizing solution can be obtained, however,

the assumed level of performance can be met. Since the idea is to make Y as small as
possible L< 1), a smaller value of y is then assumed, and the process is repeated until some

set tolerance on the change in y values is achieved. At this point, it is assumed that the

upper bound on attainable closed-loop d to e transfer infinity-norm provided by y closely
approximates actual achievable performance, and the H,, optimal compensator is

represented as

K(S) CKk k (5.11)

where

=k-- A - B,(DD,)-'B3XZ- Y c3(D32 2)C 3 - c2c2

Bk c (r r'T T§k = Y .3 (D32EG2

Ck = -(t3)-'B33
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z = (I - lYx9 ,

Note that like the H2 optimal compensator, the generally non-unique Ho. optimal

compensator has dimension equal to the dimension of the plant.

Comparison of (5.6-5.9) indicates that the H,* Riccati equations reduce to the H2

Riccati equations when y is chosen to equal infinity. Thus, H2 design can be thought of as

H., design with the particular choice of infinity for y. Recalling that y only represents an

upper bound on the infinity-norm of the closed-loop transfer from d to e, however, it

should not be assumed that the H2 closed-loop transfer infinity-norm will be infinite.
However, the actual H2 closed-loop transfer infinity-norm from d to e can be computed and
used as an initial guess for y in the -.oo design process. If success is obtained in reducing y

from this level, better worst-case performance (smaller d to e infinity-norm) results from
the H,. design than from the H2 design.

5.3.4 Loop-Shaping Techniques

In an intuitive sense, the H, design process can be thought of as a tool for

manipulating the peak value of the closed-loop transfer function from d to e. This suggests

that by altering where the peak value of the open-loop transfer function occurs, we can
dictate a particular frequency range in which we want the H. design to focus its efforts.

Similarly, the H2 design process can be interpreted as trying to simultaneously push down

all the maximum singular values of the T22 block, providing the ability to affect the entire

closed-loop transfer. Thus, by augmenting the open-loop dynamics with frequency
dependent weighting functions, H,, and H2 optimal control provide a means of effectively

shaping the frequency response of the transfer function of interest. Consider Figure 5.5,

which illustrates the two-block open-loop design plant augmented with frequency

dependent weighting functions on the system error and control vectors.
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Figure 5.5 Weighted Open-Loop 2-Block Model.

The Hp optimization problem (where p represents either the 2-norm or infinity-norm) is

now f osed as the determination of a dynamic compensator K(s) such that

K(s) = inf 1TeId(s)l1p = if Wi(s) TZ d(S) I
K K Wu(S)Tud(S) P (5.12)

where

= esp]
elos

Note that due to the additional states augmented onto the plant to represent the shaping-filter

dynamics, loop-shaped compensators are invariably of higher order than the 'riginal plant.
It is hoped that the extra dimensionality afforded the compensator by this process can be

taken advantage of to achieve superior performance.

Now, to facilitate discussion, consider only the control portion of the performance criterion
in an H,, optimization problem. With proper scaling performed, assume the design

objective is posed as
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II Wu(s) Tud(S) I11 ! 1 (5.13)

Equation (5.13), due to the sub-multiplicative property of the infinity-norm, can be

rewritten

11 W u(s)I1._ 11 Wu (S) 11_ < 1 (5.14)

or

II Tud(S) 11- < 1
II Wu(s) 1100 (5.15)

Thus, Tud(s) can be made small in the frequency range of interest by choosing the
weighting function Wu(s) to be large enough in that frequency range (so that this is where

the peak value of the closed-loop transfer occurs). The same argument of course applies to
the segment phasing and LOS portions of the error. A similar argument applies to the H2

optimization problem, except (5.14) and (5.15) cannot be explicitly written for the 2-norm.
However, because the H2 optimization problem works with all the maximum singular
values of the closed-loop transfer instead of just the peak value, H2 loop-shaping

techniques sometimes allow easier manipulation of the overall frequency response. Further
illustration of loop-shaping techniques is best provided by application to the SBL BEA

'IOM example, the details of which are discussed in Section 7.4.
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CHAPTER 6

The Design Plant Model

6.1 Introduction

The framework for robust control system design discussed in Sections 5.1 and 5.2

assumes a state-space realization (5.1) is available for the open-loop 3-block system model

of Figure 5.3. The framework further assumes that the disturbance and error vectors are

unity bounded in a 2-norm sense. As discussed in Chapter 2, the BEA system model

developed so far is of the 2-block form seen in Figure 6.1, which represents the open-loop

transfer from the vibrational torque disturbances and actuators to the measured and

penalized LOS and segment phasing errors.

dT e

G(s)

U

K(s) I

Figure 6.1 Nominal Open-Loop 2-Block System.
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This chapter illustrates the details of transforming the BEA model of Chapter 2 into the

form discussed in Sections 5.1 and 5.2, which shall then be referred to as the design plant

model (DPM). Sections 6.2 and 6.3 address formulation and norm bounding of the error

and disturbance vectors, respectively, and Section 6.4 details selection of process and
measurement noise levels via simulation and H,L requirements analysis. Section 6.5

illustrates augmentation of the 2-block system with the multiplicative error block seen in

Figure 5.3 so as to form the nominal open-loop 3-block design model.

6.2 Error Vector Formulation and 2-Norm Bounding

As discussed in Sections 5.1 and 5.2, all quantities that are desired to be kept small by

the control system must be included in the error (performance) vector of Figure 5.3. In

Section 2.3, the primary performance variables for the SBL BEA were identified as the

LOS and segment phasing errors, which were represented as linear combinations of the

state variables

e(t) = C2 x(t)

Also, as per assumption 3) of Section 5.2.2.1, the error vector must include a non-singular

penalty on the system controls independent of the LOS and segment phasing errors. The

error vector can therefore be represented

e(t) = FC21x(t) + 0 dT(t) + [ 0I1u(t)
L0i L p1 1(6.1)

which can be seen to meet all assumptions made so far, except for the assumption that II e 112
< 1. Norm bounding of the error vector will now be addressed.

Consider Figure 6.2, which represents the closed-loop transfer from d to e', where e'
represents a scaled version of e such that if the performance goals of Section 2.3 are

achieved, then the 2-norm of e' is less than 1.
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Figure 6.2 Closed-Loop System with Scaled Error Vector.

The problem is to select the diagonal scaling matrix S to accomplish the above conditions.

From Figure 6.2

e'= S e

and we want

l1 e' 112 < 1

However, the performance goals of Section 2.3 were expressed in terms of allowable 2-
norms for the segment phasing and LOS errors only, and, therefore, the quantity that we
are really interested in bounding is not the 2-norm of e (including controls) but instead

I1 ' 112 = 1 esp', 112
elos

= 11 Csp' 112 + II elos' 112 (6.2)

By allowing the diagonal elements of S (represented by lower case) to be different only for
the segment phasing and LOS components of the error vector

esp= Ssp esp

elos= Slos elos

the desired relationship becomes

/sSp2 11 esp 1122 + SIMo2 II elo, 1122 <  I

83



or, squaring both sides,

sp2 l1 esp 1122 + s 2 II el,, 1122 < 1 (6.3)

At this point, we have one equation and two unknowns (ssp and Slos), and therefore we

must assign relative importance to the two error terms. Making both error sources equally

important results in

Ssp2 II esp 1122 < 1-2

S II el., 1122 < -

2 (6.4)

which can be solved trivially to yield

1
Ssp 11('2I esp 112

= I
Slos = II elos 112 (6.5)

Substitution of the values for the allowable 2-norms of the segment phasing and LOS

errors obtained in Section 2.3 results in

Ssp -(0.15 10-6)

Slos = • (0.1 xX 0-6) (6.6)

To reduce the dimensionality of the design problem, only 14 of the 27 possible segment

phasing outputs were included in the enror vector along with the two LOS outputs and 24

controls (scaled by p). Therefore, the first 14 diagonal elements of the matrix S are set

equal to Ssp, the next two are set equal to Slos, and the final 24 diagonal elements

(corresponding to the system controls) are set equal to one. Since we now want to work

with e' instead of e, e is replaced with S-le in (6.1), and multiplying both sides by S yields
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e(t) = S [ ?1x(t) + 0 d(t) + [ ut
0 P u~t)(6.7)

as the error equation.

6.3 Disturbance Vector Formulation and 2-Norm Bounding

The robust control system methodology presented in Section 5.1 requires that all
exogenous inputs to the system be lumped together to form a single "disturbance" input
vector, d(t). As discussed in Chapter 2, the exogenous inputs for the SBL BEA come from
only two sources: broadband noise, 0(t), that results in corruption of sensor
measurements, and vibrational torque disturbances, dT(t), which enter the system as
process noise. By combining these two noise sources into a single disturbance vector

d(t) = [dT(t) 1
L (t)

the system dynamics can be represented

x(t) = A x(t) + [B21 0] [dT(t)1 + B3 u(t)
0 (t) I

y(t) = C3 x(t) + [0 I] dT(t)1 + 0u(t)
0(t) i(6.8)

and (6.7) remains unchanged except for the increased dimension of the zero D22 matrix.
Note that B2 D32 T and D33 are now zero as assumed in Section 5.2.2.1, and we can once
again turn to the subject of norm bounding.

Consider Figure 6.3, which represents the closed-loop transfer from d' to e', where
now d' has 2-norm less than one.
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Figure 6.3 Closed-Loop System with Scaled Disturbance and Error Vectors.

By proceeding in exactly the same manner as for the error vector, we arrive at the equations

n = 12~ i'In fr - 11-2- dT 112

1
I 112  

(6.9)

for the diagonal elements of the disturbance scaling matrix N, and the open-loop 2-block

system G(s) is now given by

i(t) = A x(t) + [B21 "0] N-' d'(t) + B3 u(t)

e'(t) = 2 [ x x(t) + 0 d'(t) + [0 u(t)

y(t) = C3 x(t) + [0 1] N-1 d'(t) + 0 u(t) (6.10)

or, using lower case letters for the matrices of (6.10) now to avoid confusion in later

manipulations,

[ a b2  b3 1
G(s) = c2  0 dZ3

c3  d 2 0 (6.11)

Unlike the situation for the error vector, however, we do not have upper bound values for
the 2-norms of the torque disturbances and measurement noise. Obtaining these values is
the subject of the next section, which falls under the heading of requirements analysis.
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6.4 Requirements Analysis via H., Design

6.4.1 Procedure

The H,,, design problem with known performance specifications formulated above

allows requirements analysis to be easily performed by discretizing a search space over a

range of allowable disturbance levels and sensor noise norms, and then performing a finite
number of H,. controller computations. Given reasonable upper and lower bounds for the

2-norms of the disturbances and measurement noises, the open-loop system can be scaled
to yield unity bounded d and e vectors as in Sections 6.2 and 6.3, and the closed-loop H,.

problem solutions then permit attainable performance to be parametrized in terms of these
2-norms. The requirements analysis computations are performed without bandwidth

constraints (affected by making p in (6.7) very small (= 0.002)), to make certain that the

noise levels are the parameters actually driving achievable performance.

6.4.2 Segment Phasing Sensor Configuration Study

Besides establishing 2-norm bounds on the process and measurement noises, another

question to be resolved by the requirements analysis process is how many of the 27

segment phasing outputs actu~ally need to be measured to provide enough information for

effective control. Intuition suggests that since the BEA ROM does not contain any bending
mode dynamics, two measurements along any mirror segment edge border should give

enough information to assess the relative positions of the two rigid segments. To verify
this and determine the effect of various sensor configurations on achievable performance,

six different combinations of segment phasing outputs (see Figure 6.4) were selected for
inclusion with the two LOS outputs in the measurement vector, y(t), and the above Hoo-

based requirements analysis process was iterated.
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Figure 6.4 Requirements Analysis Sensor Configurations.
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Lines of closed-loop infinity-norm (y) equal to one versus disturbance torque and

measurement noise 2-norms for the six different segment phasing sensor configurations of

Figure 6.4 are plotted below in Figure 6.5 for an 18-state B&T SBL beam expander model.
The 18-state ROM was used to reduce the computation time and effort involved in
repeatedly solving the H,, Riccati equations (5.8-5.9). Note that the system has been

scaled as illustrated in Section 5.2 so that a closed-loop infinity-norm of one indicates that

desired performance specifications are met.
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Figure 6.5 y 1 Versus { II dT 112,11 0112 1.

From Figure 6.5 it can be seen that, for a given level of disturbance torque energy, sensor

configurations 3 and 6 allow performance specifications to be met with the largest amount
of measurement noise (or least accurate sensors). Sensor configuration 1, which uses only

six measurements compared to 9 for configurations 3 and 6, requires only slightly more
accurate sensors. Configurations 4 and 5, which employ only 3 measurements each,
require significantly more accurate sensors, and configuration 2, which provides 6 segment

phasing measurements all taken along the center segment, does not appear to be a good
choice either. Based on Figure 6.5 and a desire to reduce dimensionality of the plant

model, sensor configuration I was chosen to provide the segment phasing measurements
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for the SBL BEA model. Figure 6.6 illustrates the tradeoffs between achievable closed-
loop performance, and process and measurement noise for sensor configuration 1.

-8
10 2

Et 4-7" - -  - :;  ......... ....................

z ;/

,U,

6 -~10

10- 

10 102  10-1 100 101

Process Noise 2-Norm

Figure 6.6 Achievable Performance Versus f II dT 112, II 112 }

(Sensor Configuration 1).

From this figure, various combinations of disturbance torque and measurement noise 2-
norms can be chosen for which performance goals are met. A likely scenario for the SBL

disturbance environment will now be created.

6.4.3 Disturbance Environment Scenario

In order to obtain a rough estimate for the level of disturbance torques likely to be

experienced by the SBL BEA, the following hypothetical situation is postulated 5 . Due to
attitude control and gross pointing requirements, the SBL forebody will often be

commanded to perform slew manuevers. In such an event, the SBL system concept calls

5 Effort is made in this thesis to fabricate a reasonable, but not totally realistic, set of disturbance and

performance parameters in order that the control system synthesis procedure may be carried out in an

illustrative manner. Fully realistic choices for these parameters are not chosen, in order to avoid any

complications with the classification status of this document.
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for the aftbody to reposition itself in order to avoid saturation of the forebody/aftbody
gimbal. In performing this manuever, the aftbody will invariably impart some small
amount of vibrational energy to the forebody via the gimbal isolation subsystem. Since the

aftbody dynamics are not modeled in this thesis, it is assumed that the rigid body motion of
the aftbody can be approximated by using the 12-state rigid body dynamics model of the
BEA. The torque required to perform various aftbody slew manuevers is computed via

simulation with this model, and, due to the dissipating effects of the gimbal isolation

system, the torque energy imparted to the BEA is then assumed to be five percent of the
torque energy required for the aftbody slew manuever. This five percent figure is
consistent with the upper bound on an assumed ability of the vibration isolation subsystem
to attenuate transmitted torque by a factor of ten to twenty. In the simulations, the torque
input is assumed to be of a sinusoidal nature with period equal to the duration of the slew.
Table 6.1 details the one-input maximum torque required to slew the SBL LOS through
various angles parametrized versus selected slew durations.

dT (max) (N-m) Slew Duration, T (sec) AO (degrees)

10 10 0.27

2.2 10 0.06
1 10 0.027

500 1 0.135
100 1 0.027

5 25 0.84
1 25 0.168

Table 6.1 Aftbody Slew Manuever Requirements.

From the choices available in Table 6.1, the 0.06 degree, ten second slew manuever was

arbitrarily selected as an upper bound on the allowable demands of slcw manuevers. From
the table it can be seen that this places an upper bound of 2.2 N-m on the maximum

required torque. The 2-norm of the single element torque is given by

II dTi(t) 112 = dT i (max) sin2(Ct) dt
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dTi (max) (.2

and is found to have the value 4.92 N-m-s1 /2 for the selected upper bound values of

dTi(max) and T. Taking five percent of this value yields 0.246 N-m-s 1/2, which is bounded

above by 0.25 N-m-s 1/2 for convenience. Allowing this maximum 2-norm for both of the

disturbance torque elements results in a total disturbance torque 2-norm of

II dT(t)112 = hi dTi(t)II2 + II dTi(t) 1I2 = 0.353 N-m-s1 /2  (6.13)

for use in (6.8).

Now that a value has been chosen for allowable disturbance torque levels, Figure 6.6

can be used to establish sensor requirements. From the figure, a logarithmic measurement

noise 2-norm bound of

log0 (11 0112) = -7.85 (6.14)

(m-s1/ 2 or rad-s 1/2 as appropriate) was chosen for use in (6.9), resulting in a value for the
2-norm of 0 of 1.414x10 -8 m-sl/ 2/rad-s 1/2 . This choice allows some leeway for

performance to be lost and still meet specifications when the 56-state model is used for

design (versus the 18-state model used in computations), and for when plant uncertainty is

accounted for via robustness considerations.

Note that the selection of disturbance parameters was performed under deterministic

assumptions. As mentioned previously, the design problem can be formulated in a

stochastic framework, by interpreting the scale factors in (6.9) as reciprocals of the square
roots of intensities of filtered white noise disturbances, or as upper bounds on the RMS

values of non-white random disturbances.

The open-loop 2-block system has now been formulated to fit into the robust control

system design framework described in the previous sections. Equations (6.6), (6.10-
6.11), and (6.12-6.13) provide all the system matrices needed for solution of the H2 and
Ho. Riccati equations presented in Section 5.2.2 ((5.4-5.6) and (5.8-5.11), respectively).

What remains to be done is to augment the 2-block system with the multiplicative error

block of Figure 5.2, to facilitate closed-loop robustness analysis with the Small Gain
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Theorem. Creation of the nominal 3-block system via unstructured uncertainty error bi -,ok

augmentation will now be addressed.

6.5 Augmentation of the Multiplicative Error Block

As described in Section 5.2, robustness analysis with the Small Gain Theorem requires

that all uncertainties in the plant be modeled as stable errors with infinity-norms less than or

equal to one. For the SBL BEA robust design problem, the only uncertainties present are

the unmodeled high-frequency dynamics truncated in the model reduction process of

Chapter 4, as motivated by the need to limit plant dimensionality. Modeling of the error

due to the truncated high-frequency dynamics in a manner consistent with the SGT can be

accomplished in the following way. Consider Figure 6.7, which, without including

measurement noise, shows the plant uncertainty due to model reduction as a multiplicative

error at the plant output.

U oby

Figure 6.7 ROM with Multiplicative Modeling Error.

By comparing Figure 6.7 with Figure 6.8, which shows the actual 1-block open-loop

plant, Ga(s),

U- Ga(s) b y

Figure 6.8 Actual Open-Loop Plant.

it can be seen that
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G,(s) = (I + AM(S)) G(s) (6.15)

Solving for AM(S),

AM(S) = (Ga(s) - G(s)) G(s) I  (6.16)

Thus, by using the state-space realization of the 120-state B&T model for Ga(s) and the

state-space realization of the 56-state ROM for G(s), and computing the right-hand-side of

(6.16) as a function of frequency, the singular value frequency response of the

multiplicative error at the plant output due to model reduction can be obtained. Note that by

using the 120-state B&T model for the actual plant instead of the 390-state full model, we

are neglecting the effects of the other 270 full model states on the system frequency

response, which in Chapter 4 were seen to be slight. More importantly, however, by using

a minimal realization for G(s), we are guaranteeing that G(s) is non-singular, and therefore

G(s)-I will be computable at all frequencies. Figure 6.9 shows the r'aximum singular

value frequency response for the plant output multiplicativ- error due to model reduction,

calculated as discussed above.
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As can be seen from the figure, the error is small at low frequencies where all the

vibrational modes of the mirror segments were retained, and jumps up to very high values

in the 200 to 600 rad/sec frequency range where the bending mode dynamics have been

truncated. The error reaches significant levels (0 dB) at about 100 rad/sec.

In order for this error representation to be useful in testing robustness, a state-space

realization must be obtained, and scaling must be performed so that the infinity-norm of

AM(S) is less than or equal to one. To illustrate how this process may be accomplished,

consider Figure 6.10, which is just Figure 6.7 except that now

AM(S) < F(s) AM(s) (6.17)

where F(s) is any stable transfer function which effectively represents an upper bound on

the multiplicative error maximum singular value response, and IIM(s)llIo is less than or

equal to one.

U s G(s) n y

Figure 6.10 ROM with Scaled Error Block.

By augmenting the dynamics of G(s) to include the dynamics of the error bounding filter,

F(s), the system of Figure 6.10 can be expressed as in Figure 6.11, which is an

appropriate form for use in analysis with the Small Gain Theorem.

95



U W

U Gaug(S) y

Figure 6.11 Augmented Plant with Scaled Error Block.

This procedure shall now be carried out for the SBL BEA design problem. Consider
Figure 6.11, which shows the multiplicative error at the plant output maximum singular
value frequency response, and a third-order, single-input/single-output, minimum-phase,

and stable transfer function frequency response which effectively bounds the multiplicative
error response curve.

so 9 1 .I I I I I . . I I I I aI.

U

IreJ

I,- I

Z F(s) ,'

| f A M (S)

LL~li

FREQUENCY (rad/s)

Figure 6.12 Plant Output Multiplicative Modeling Error

and Bounding Transfer Function, F(s).

If a state-space realization for this bounding transfer function is
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[a, bfl
cf dd (6.18)

then a state-space realization for F(s) can be obtained by realizing that each channel of the

output must be independently filtered by (6.18) to satisfy (6.17), since it is not known in

which channel the maximum transfer will occur. Enlarging the dimension of (6.18) to

correspond to the dimension of the plant output, which in this case is eight, results in a 24

state, uncoupled state-space realization for F(s)

F(s) [ bfl 1-f 'tJcri dI 8 J LCJDd (6.19)

where 18 is an 8 x 8 identity matrix.

The dynamics of the error scaling filter can now be augmented to the ROM state-space

realization of G(s) (6.11) by writing the equations for the filter as

0(t) = Afp(t) + Bfv(t)

z(t) = Cf p(t) + Df v(t) (6.20)

and recognizing that the input to the shaping filter is equal to the state component of the

output:

v(t) = C 3 x(t) (6.21)

so that

(t) a 0 [x(t) 3U(t)

Bf C3 Af [Pc (t) "3 +[0]w(t) + [ b2] d*(t) +LO

w(t) = [Dfc3 Cd p(t) + 0w(t) + 0d'(t) + 0u(t)

x(t) 

e'(t) = [C2 0 p(t) + 0 w(t) + 0 d'(t) + d23 u(t)
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y(t) = [C3 0] [ (t) + I w(t) + d32 d'(t) + 0 u(t) (6.22)

Equation (6.22) gives the 3-block augmented plant, Gaug(S) , in the form required for

robustness analysis via the Small Gain Theorem described in Section 5.2. The design

model has now been fully formulated so that control system synthesis and robustness

analysis may proceed. This topic is addressed is Chapter 7.
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CHAPTER 7

Compensator Designs

7.1 Introduction

In this chapter, the controller design methods of Section 5.3 are applied to the BEA
open-loop 2-block system given by (6.10-6.11), and nominal performance and robustness
analyses are performed on the system obtained by closing the resulting compensator loop
(substituting u = Ky) of the augmented 3-block system given by (6.22). Three basic types
of compensator designs are presented. The first type (Section 7.2) is the unconstrained
bandwidth H2/Ho. design arising as a natural extension of the requirements analysis of

Section 6.4, and which provides a lower bound on achievable performance without regard
to stability robustness or actuator constraints. Section 7.3 presents robustly stable H2/H,.

designs accomplished via inclusion of constant control penalty in the performance vector.
Frequency dependent penalty of the error and/or control gives rise to H2/H.. loop-shaping

designs, which are presented in Section 7.4. In order to strike a balance between
presen ; g too much or too little information to make meaningful comparisons between

designs, the method of design presentation chosen focuses on certain important maximum
singular value frequency response plots. These plots are intended to capture and illustrate

the significant differences between the various designs, without overloading the reader with
too much information to readily digest. The level of information available in these plots is
sufficient for selection of a best design and illustration of its major characteristics, which is
the immediate objective of this chapter. More detailed discussion of the selected design is
then presented in Chapter 8, where design implementation/validation issues are considered.

99



In this chapter, the unconstrained bandwidth H2 and H , designs are shown to validate

the requirements analysis process of Chapter 6, and both designs are shown to meet

nominal performance specifications. However, as might be expected, the resulting high

bandwidths of these designs are seen to have sufficient potential to excite the neglected

high-frequency dynamics so that they violate the stability robustness test of the Small Gain

Theorem, making these designs unacceptable. Incorporating significant constant control

penalty into the error vector is seen to solve the stability robustness problem, but results in

an unacceptable degradation of closed-loop system performance. By using loop-shaping

techniques on the system errors in conjunction with H2 optimal control, robust designs that

meet performance goals over limited low and high-frequency bands are then developed.

Since the system disturbances are assumed to be broadband in nature and therefore have

significant power in between these low and high frequency regions, this too is an

unacceptable solution. Finally, frequency dependent penalty of the system controls and
H.. optimal control yield the desired combination of robust stability and desired closed-

loop performance over the entire frequency range of interest.

7.2 Nominal Performance (Unconstrained Bandwidth) Designs

As mentioned previously, the requirements analysis of Section 6.4 which determined

levels of process and measurement noise used to establish the DPM was performed on an

18-state B&T BEA reduced-order model without bandwidth constraints (p = 0.002). In

order to assess the change in achievable performance incurred by increasing the model
dimension from 18 to 56 states, but still using unlimited control authority, the HI, optimal

controller is recomputed in this section using the DPM system matrices of (6.10-6.11), and
nominal closed-loop performance (IIT22(s)11,,) is reevaluated. Also, we would like to

ascertain how close the DPM-based unconstrained bandwidth design comes to meeting the

stability robustness test of the Small Gain Theorem, so the infinity-norm of the T1I block is

computed as well.

Figure 7.1 shows the open and closed-loop transfer maximum singular value frequency
response plots from d to e for the plant model and unconstrained bandwidth Ho. design,

respectively. For purposes of comparison, the closed-loop nominal performance maximum

singular value frequency response is also shown for an H2 optimal controller derived from

the same plant model realization. As can be seen from Figure 7.1, closing the feedback

loop about either unconstrained bandwidth controller results in a system that achieves
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nominal performance specifications (closed-loop transfer infinity-norm from d to e less

than 1 (0 dB)), effecting an over 60 dB decrease in worst-case system transfer from the

disturbances to the errors when compared to open-loop performance. Note that over most

of the frequency range of interest, the H2 design outperforms the HI, design (in terms of

better disturbance attenuation), but the H. response has a slightly smaller infinity-norm (-

7.54 dB versus -2.43 dB), indicating that it has better worst-case disturbance rejection
properties than the H2 design. Also, the Ho, response is flatter than the H2 response,

suggesting that the H. design achieves a more perfect inversion of the open-loop

dynamics.

w

Open-Loop
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Figure 7.1 Open and Closed-Loop Transfer From All Disturbances to All Errors (T22)

(Unconstrained Bandwidth Designs).

Recalling that the disturbance vector contains both torque disturbances and sensor

measurement noise, and that the error vector has both segment phasing and LOS terms, the

closed-loop transfer from d to e can be partitioned

elos [T2221 (s) T -2222(s) 1 0(7.1)

and the singular value frequency responses of the four sub-blocks can be computed to
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provide insight into the effects of the various terms. Figures 7.2-7.5 show the maximum

singular value frequency responses for the T 22 11, T22 12, T 222 1, and T22 22 sub-blocks,

respectively. From Figure 7.3 it is clear that the transfer from the measurement or sensor
noise to the segment phasing errors is driving achievable performance for the unconstrained

bandwidth designs. This verifies the conclusion drawn earlier from the requirements

analysis process, in which we saw (recall Figure 6.6) that for disturbance torque 2-norms
greater than 0.01, achievable performance varied only with measurement noise. Note that
it also makes sense that the segment phasing errors are driving performance rather than

LOS errors, since the open-loop transfer to the segment phasing errors was about 13 dB

greater than the open-loop transfer to the LOS errors.
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Figurc 7.2 Max. Singular Value Closed-Loop Transfer from
Torque Disturbances to Segment Phasing Errors (T22 1 1)

(Unconstrained Bandwidth Designs).
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Figure 7.3 Max. Singular Value Closed-Loop Transfer from

Sensor Noise to Segment Phasing Errors (T22 12)

(Unconstrained Bandwidth Designs).

-3 0 H -2

-40 H-inf

W -50

z-60

-70

-80
100 101 102 103

FREQUENCY (rad/s)

Figure 7.4 Max. Singular Value Closed-Loop Transfer from

Torque Disturbances to Line-of-Sight Errors (T222 1)

(Unconstrained Bandwidth Designs).

103



-15

-20 _

-25 H-if

~-30

-35 H-2

S-40

S-45

-50

-55
100 101 102 103

FREQUENCY (rad/s)

Figure 7.5 Max. Singular Value Closed-Loop Transfer from

Sensor Noise to Line-of-Sight Errors (T2222)

(Unconstrained Bandwidth Designs).

Turning to stability robustness issues, since both these designs employ virtually no

penalty on control authority, they should be expected to possess high gain, high bandwidth

characteristics. As there is significant modeling error at high frequencies as well, the

combined large error and loop gain at high frequencies should severely degrade the ability

of these systems to satisfy the Small Gain Theorem. In order to verify this conjecture,

consider Figure 7.6, which shows the closed-loop transfer about the multiplicative error

block, T1 1, for the unconstrained bandwidth H2 and H. designs. As predicted, from

Figure 7.6 it is clear that both designs violate the stability robustness test of the Small Gain

Theorem, as there is a large high-frequency region (o > 100 rad/sec) in which the closed-

loop transfer about the delta block is greater than 1 (0 dB). In fact, the unconstrained

bandwidth designs do not even come close to meeting the stability robustness condition, as

the infinity-norms of both T 1I blocks can be seen to be approximately 40 dB. Recalling

that the nominal plant rolls off at high frequencies, it would seem that the SGT is being

violated due to too much gain being injected by the controllers at high frequencies. To

verify this, consider Figure 7.7, which shows the compensator maximum singular value

frequency response for both designs. From this figure it is clear that both compensators

are indeed injecting high gains at high frequencies, creating a possibility for excitation of
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the truncated bending mode dynamics, and leading to possible instability due to high-

frequency gain considerations. Thus, from Figure 7.7 it is obvious why the closed-loop

system violates the stability robustness test of the Small Gain Theorem.
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Figure 7.6 Closed-Loop Transfer About AM (TI1)

(Unconstrained Bandwidth Designs).
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Figure 7.7 Unconstrained Bandwidth Compensator Maximum

Singular Value Frequency Responses.

The final transfer function which is used in this thesis to evaluate compensator

performance is the the closed-loop transfer function matrix with the loop broken at the plant

output, Co(jco), given by

Co(jco) = (I - G(jco) K(jco)}-'{-G(joo) K(jco)) - (7.2)

Note that this transfer function is the "complementary sensitivity function" to the sensitivity

function at the plant output, Sojco), discussed in Section 3.3 in that

Co(jo.) + So(jo) = I for all wo (7.3)

The complementary sensitivity function at the plant output provides several pieces of

information that are typically useful in evaluating compensator performance. Co(joc)

describes the transfer from a reference input at the output to the output itself, and is thus a
measure of command following performance at the plant output. Co(jo) is also commonly
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used to determine the closed-loop system bandwidth6 , a quantity which is known to
provide a rough measure of closed-loop system response time to a step input [71. Finally,
Co0(jco) provides information relevant to compensator implementation issues that are

discussed in Chapter 8. Since command following is not a design characteristic of interest

to the pure disturbance rejection problem being considered in this thesis and since
implementation issues are addressed in Chapter 8, the main use that will be made of the
Co(jco) frequency response plots presented in this chapter is to assess closed-loop system

bandwidth.

The maximum singular values of C0 (jco) versus frequency for the robust H2 and H ,

designs are shown in Figure 7.8. From Figure 7.8 it appears that the two designs have
similar bandwidths. Close examination of the singular values reveals this to be the case,
with the bandwidth of the H,.. design approximately equal to 150 rad/s, and the bandwidth

of the H2 design approximately equal to 155 rad/s. The H2 design should therefore be
expected to exhibit a slightly faster attenuation of a step output error than the I-. design.

6 In this thesis, the bandwidth of a system is given in terms of its complementary sensitivity function

at the plant output, C(jo), and is determined as the frequency at which C 0(j0) = Co(O) - 3 dB.
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Figure 7.8 Complementary Sensitivity at Plant Output

(Unconstrained Bandwidth Designs).

From the results presented in this section, it can be seen that both unconstrained

bandwidth designs have no difficulty in meeting the performance specifications prescribed
in Chapter 2. Indeed, both the H2 and H. designs presented can do significantly better

than desired performance objectives; however, they do so in a way that violates the stability
robustness test of the Small Gain Theorem. From Figures 7.6 and 7.7, it is clear that this

occurs because too much gain is being injected by the compensators at high frequencies.
Methods of reducing the high-frequency gain so that a robustly stable design is achieved

are now addressed.

7.3 Robust Designs

Traditional means of overcoming the high-frequency, high gain problem displayed by
the unconstrained bandwidth designs of Section 7.2 involve increasing the value of p in

(6.1), so that the error vector effectively penalizes the system control, u, at all frequencies.
This tends to limit the amount of gain injected by the compensator at all frequencies so that

the system bandwidth is decreased, which is desirable from a stability robustness point of
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view, but has the undesirable consequence of making the system time response more
sluggish. Stability robustness is obtained via this methodology by increasing the penalty
weighting on u until the gain injected at high frequencies diminishes enough to offset the

large modeling error present. Figures 7.9 and 7.10 show open and closed-loop transfer
maximum singular value plots from d to e and about AM, respectively, for robust H2 and
H. designs achieved by increasing the value of p from 0.002 to 6000. From Figure 7.9 it

can be seen that the robust H2 and H, designs appear to be nearly identical in terms of

closed-loop performance, the main difference being a slightly greater infinity-norm for the
H2 design (the H design has a performance transfer function infinity-norm of 11.1 dB,

compared to 11.4 dB for the H2 design). Also, as indicated by the figure, both these
designs exhibit unacceptable disturbance amplification (> 0 dB) in the frequency range
from dc to -30 rad/s, so that performance specifications are not met by either design.

Figure 7.10, however, indicates that both designs are robustly stable. Therefore, although

bandwidth reduction has resulted in a sacrifice of about 20 dB in worst-case disturbance
rejection performance from the unconstrained bandwidth designs, it has been effective in

achieving the important goal of stability robustness.

Figures 7.9 and 7.10 and the preceding discussion clearly illustrate the nature of a

tradeoff existing between obtaining stability robustness via bandwidth reduction and
formulating the optimal control problem so as to strictly attain nominal performance
objectives. As seen in Section 7.2, the unconstrained bandwidth option yields a system
with excellent nominal performance, but unacceptable robustness qualities. As illustrated

in this section, frequency independent penalty of the control reduces the high-frequency
gain as desired so that stability robustness is achieved, but also penalizes the control at low
frequency, so that an unavoidable degradation in nominal performance results. Figure 7.9

indicates, though, that even with this degradation, the reduced bandwidth robust designs
still manage to accomplish a significant improvement over the open-loop performance of

the system.
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To see which combination of disturbances and errors is now driving performance,

consider Figures 7.11-7.14, which show the maximum singular value frequency responses

for the T2211, T22 12, T222 1, and T222 2 sub-blocks of the robust designs. Note that now it

is the transfer from the disturbance torques to the LOS errors that is driving attainable

closed-loop performance, and that the transfer from the torques to both sets of performance

variables no longer meets performance specifications. The figures also indicate that

measurement noise is no longer a factor in determining performance, which is the result

intended by selection of the allowable measurement noise levels in the requirements

analysis process.
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Torque Disturbances to Line-of-Sight Errors (T2221)

(Robust Designs).
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Figure 7.14 Max. Singular Value Closed-Loop Transfer from

Sensor Noise to Line-of-Sight Errors (T2222)

(Robust Designs).

To gain more insight into how stability robustness has been achieved with these

designs, consider Figure 7.15, which shows the maximum singular value frequency
responses of the robust H2 and -. compensators. Note that the two curves are very

similar up to about 20 rad/s, where the HI design again starts to display higher gain than

the H2 design. The most significant thing to be observed from the figure is that now both

compensators are rolling off the injected gain at about the 100 radians per second mark.

This is what allows the designs to meet the stability robustness test of the Small Gain

Theorem. Also important to note is the over two orders of magnitude (40 dB) drop in gain
injected at lower frequencies compared to the unconstrained bandwidth designs (reference
Figure 7.7), resulting in the degradation in nominal performance displayed by the robust

designs. This is the expected result of penalizing the control at low as well as at high

frequency.
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Figure 7.15 Robust Compensator Maximum Singular Value

Frequency Responses.

Earlier in this section, the claim was made that imposing constant (frequency-

independent) control penalty in the error vector resulted in a decrease of closed-loop system

bandwidth. To verify this claim, consider Figure 7.16, which shows the closed-loop gain
at the plant output, C0(jc), for the robust designs. As is evident form the figure, the

closed-loop bandwidth has indeed decreased markedly, from -160-180 radians per second

in the unconstrained batidwidth designs to about 36 radians per second in the robust

designs. The time response of the robust designs should therefore be expected to be

significantly more sluggish than that of the unconstrained bandwidth designs. This is
further evidence of the sacrifices incurred by obtaining stability robustness via constant

control penalty.
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Figure 7.16 Complementary Sensitivity at Plant Output

(Robust Designs).

From this section, it can be seen that penalizing the control at all frequencies in the

optimal control problem is effective in attaining closed-loop stability robustness, but results

in an unacceptable degradation of system disturbance rejection performance, particularly at

low frequencies. Alternate means of achieving stability robustness without greatly

sacrificing achievable performance are therefore required. From Figure 7.15, it seems that

what is needed is a methodology that induces the compensator to inject higher gain at low

frequencies (thereby improving performance), while still forcing a fast roll-off of gain at

high frequencies in order to meet the stability robustness constraint. This design objective

suggests the use of frequency dependent design techniques, otherwise known as loop-

shaping methods. Implementation of such design techniques is now addressed.
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7.4 Loop-Shaping Designs

7.4.1 Introduction

In Section 5.4.3, a design methodology is presented involving augmentation of

frequency dependent weighting functions to the error and/or control vector, followed by
solution of either the H2 or H, Riccati equations in order to obtain a compensator

realization. The details of application of these techniques are now presented. Section 7.4.2

describes a frequency weighted error vector H2 design, and Section 7.4.3 describes a

frequency weighted control vector H. design. Augmentation of the plant dynamics with

shaping filters is discussed for each design, followed by presentation of the same closed-

loop frequency response plots as seen in Sections 7.1 and 7.2 for the unconstrained

bandwidth and robust designs.

7.4.2 Weighted-Error H2 Design

In Section 7.3 it was seen that the robust designs resulting from large control penalty at

all frequencies degraded low frequency performance beyond allowable limits. Intuition

suggests that by skillful formulation of a frequency weighted control problem, it should be

possible to design a compensator that injects high gain at low frequencies and still rolls off

quickly enough to be robustly stable. A means of employing this strategy utilizing weights

on the error vector only is now pursued. Ignoring the controls portion of the error, the

condition for meeting performance specifications reduces to

I Wa(s) Ta d(S) I11 < 1 (7.4)

as discussed in Section 5.3.4. In light of the above discussion, (7.4) suggests that the

frequency dependent weighting function (or shaping filter), We(s), should be selected to be

large at low frequencies and small at high frequencies. This can be interpreted as telling the

optimal control problem to penalize the low frequency error more than the high frequency

error, so that the compensator will focus its effort on and inject more gain into the low

frequency region. Once a weighting function has been selected that possesses the above

characteristics, a state-space realization is obtained, and the filter dynamics are augmented
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to the open-loop 2-block model (6.11) as follows. Given a state-space realization for the

shaping filter, We(s),

W(s)[AW BWj
Wgs = C,, Dw

the filter dynamics can be written

0(t = Aw p(t) + Bw e(t)

e'(t) = Cw p(t) + Dw e(t) (7.5)

Recalling that

E(t) = c2 x(t)

the 2-block system for use in the Riccati equations becomes

(t) a [ ]a 0 iF x(t)]+[b21 d(t) + b,]1UO

0(t) I [ Bf c 2 A L P(t)

e'(t) = [Df c2 Cf] X(t) + d23 u(t)

Ip(t)I

y(t) = [c3 0] x(t) +-d32 d'(t)Sp(t) dt) (7.6)

A shaping filter must now be selected that accomplishes the above-stated goals. Note

that there is a great deal of freedom in selecting such a shaping filter. Filter order, poles,

zeros, and dc gain may all be varied by the designer. Consider (7.7), which shows the

transfer function of a candidate single error shaping filter:

W(S) = L1
S + ()b (7.7)

The filter of (7.7) is a simple, unity gain, first-order low-pass filter with break frequency

Wb. The MIMO weighting function, We(s), resulting from applying (7.7) to all the system

errors can be formed simply by obtaining a state-space realization for (7.7),
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W s) aw bW w
Cw 2w J [77[0o K (7.8)

and defining We(s) to be represented by

We(s) = [awle bwle (79)

where Ie is the square identity matrix with dimension equal to the number of errors, which

is 16 in this case. The filter of (7.7) is first-order, and it therefore limits the increase in

dimension incurred by augmenting the filter dynamics to the plant to an additional 16

states, one for each segment phasing and LOS error. The filter also has unity dc gain for
simplicity. Such a choice for the structure of the error shaping filter reduces the number of

parameters to be varied in the design process to two, namely the break frequency of the
shaping filter, wob, and the scalar control weight, p. The design process can now be carried
out by selecting various values for cob and p, obtaining a compensator, and evaluating

closed-loop performance in an iterative fashion until a satisfactory design results.

Figures 7.17 and 7.18 show the closed-loop maximum singular value transfers from d

to e for H2 loop-shaped designs incorporating error shaping filters with break frequencies
at 0.1 and 10 rad/s, respectively. The respective values of p for the two designs are 150

and 4000, arrived at by trial and error iteration until a robust design was achieved. Only

the H2 solutions are presented for the frequency weighted error designs, because
augmenting unity gain error shaping filters was not found to significantly change the -I,

closed-loop solutions from the non-filtered versions. From Figure 7.17 it can be seen that

choosing cOb to be 0.1 rad/s results in a significant improvement in low-frequency

performance. In fact, performance specifications are met by this design up to -2 rad/s.

However, note that severe disturbance amplification now occurs in the 2 to -40 rad/s
frequency range. The infinity-norm of the T22 block for this design is more than 10 dB
greater than that of the robust Hr. design of Section 7.3 (22.3 dB versus 11.1 dB). This

loop-shaped design therefore results in over three times as poor worst-case disturbance

rejection. From Figure 7.18 it can be seen that moving the break frequency of the error

shaping filter two decades to the right yields a design very similar to the robust designs

seen in Section 7.3. Close examination of the figure, however, indicates that the low-
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frequency performance of this design is somewhat better than that of the robust H,,, design

(3.1 dB versus 6.4 dB), and its performance transfer function infinity-norm is only slightly

greater (13.8 dB versus 11. 1 dB). The figures indicate that a tradeoff exists between low

and high frequency performance, as determined by location of the shaping filter break

frequency. For smaller values of cOb, excellent low-frequency performance is attained, but

worst-case performance suffers extensively. As cob gets larger, low-frequency

performance degrades, but worst-case performance improves. From Figures 7.17 and

7.18, it does not appear that any choice of ob will result in achieving performance

specifications at all frequencies. Since the low-frequency performance of the 0.1 rad/s cob

design is so good, however, it does appear that an optimal choice of cob exists greater than

0.1 rad/s but less than 10 rad/s such that performance goals can be m et for a large portion

of the low-frequency range, and worst-case performance will not be degraded too severely.

I

I

z -21
0

FREQUENCY (rad/s)

Figure 7.17 Closed-Loop Transfer from All Disturbances to All Errors (T22 )

(Weighted-Error H2 Design, cob = 0.1 rad/s).
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Figure 7.18 Closed-Loop Transfer from All Disturbances to All Errors (T22)

(Weighted-Error H2 Design, wOb = 10 rad/s).

Figures 7.19 and 7.20 show the filter frequency response and closed-loop transfer
from d to e for a weighted error H2 design with break frequency at 2 rad/s and p value of

950. This design was obtained by trial and error iteration as the design that allowed

performance specifications to be met over the greatest frequency range. From Figure 7.19,

it can be seen that the shaping filter is indeed unity gain at low frequency, and rolls off at

higher frequency (at -2 rad/s). From Figure 7.20, this design can be seen to meet

performance specifications for all frequencies less than 5 rad/s and greater than 35 rad/s,
while degrading worst-case performance from the robust H. design by only 3.1 dB. The

H2 loop-shaping methodology applied to the system errors thus allows significant

improvement in overall performance over robust designs accomplisled via pure bandwidth

reduction (constant control penalty).
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Figure 7.19 Error Shaping Filter Frequency Response
(Weighted-Error H2 Design, Cfb =2 radls).
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Figure 7.20 Closed-Loop Transfer from All Disturbances to All Errors (T22)
(Weighted-Error H2 Design, Wb = 2 rad/s).
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Figures 7.21-7.25 show the maximum singular value frequency responses of the TI 1,

and T22 subblocks of the H2 loop-shaped error design for comparison with the previous

designs. As can be seen from Figure 7.21, the weighted-error H2 design is indeed robust

to the truncated high-frequency dynamics modeled at the plant output. From Figures 7.22-

7.25, it appears that the transfer from the disturbance torques to the segment phasing errors

is driving achievable performance over most of the frequency range of interest, but the

maximum transfer occurs between the disturbance torques and the LOS errors. Also, of

the four transfer functions, only the transfer from the measurement noise to the LOS errors

meets performance specifications at all frequencies.

-

-- 15

118'
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FREQUENCY (rad/s)

Figure 7.21 Closed-Loop Transfer about AM (T1 1)

(Weighted-Error H2 Design, cIb = 2 rad/s).
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Figure 7.22 Max. Singular Value Closed-Loop Transfer from

Torque Disturbances to Segment Phasing Errors (T22 1 1)
(Weighted-Error H2 Design, COb = 2 rad/s).
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Figure 7.23 Max. Singular Value Closed-Loop Transfer from

Sensor Noise to Segment Phasing Errors (T22 12)

(Weighted-Error H2 Design, wb = 2 rad/s).
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Figure 7.24 Max. Singular Value Closed-Loop Transfer from
Torque Disturbances to Line-of-Sight Errors (T2221)

(Weighted-Error H2 Design, (Ob = 2 radls).
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Figure 7.25 Max. Singular Value Closed-Loop Transfer from
Sensor Noise to Line-of-Sight Errors (T22 22)

(Weighted-Error H2 Design, cob = 2 rad/s).
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Figure 7.26 shows the maximum singular value frequency response of the H2 loop-
shaped error design compensator. By comparing Figure 7.26 with Figure 7.15 , it can be

seen that the H2 loop-shaped compensator frequency response is very similar to the
frequency response of the robust design compensators for frequencies greater than 10
rad/s. This explains why the high-frequency behavior of the loop-shaped design, and,

hence, its worst-case performance, is not significantly different than that of the robust
designs. However, note that the loop-shaped compensator injects -15 dB higher gain at
low frequencies than do the robust design compensators. This is what allows the H2 loop-

shaped design to meet performance specifications at low frequencies, while the robust
designs do not. Recall that the H2 loop-shaped compensator possesses 16 more states than
do the robust design compensators, due to the augmented dynamics of the error shaping
filter. It is these additional states which act at low frequency to yield the difference in

performance between designs.

7C
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Figure 7.26 H2 Loop-Shaped Error Compensator

Maximum Singular Values.

Seeing that the high-frequency behavior of the H2 loop-shaped compensator is not

tremendously different than that of the robust designs, it is expected that the bandwidths of
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the designs should also be similar. Figure 7.27 shows the maximum singular value
frequency response of the complementary sensitivity at the plant output, C0 (jo), for the H2

loop-shaped error design. The bandwidth of this design is 42 rad/s, as compared to a

bandwidth of 36 rad/s for the robust designs. The H2 loop-shaped error design is thus
slightly faster, but not significantly more so, than the robust designs of Section 7.3.

if
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Figure 7.27 Complementary Sensitivity at Plant Output
(Weighted-Error H2 Design, w~b = 2 radls).

In this section, it has been shown that the technique of augmenting frequency

dependent weighting functions to the system performance variables, in combination with
H2 optimal control, allows realization of a robust, 72-state compensator that exhibits

significantly superior performance to the robust designs accomplished via bandwidth
reduction in Section 7.3. However, the H2 loop-shaped error design obtained is not

successful in meeting prescribed performance specifications at all frequencies. From
Figures 7.17-7.20, it would appear that the H2 error shaping methodology will not allow a

sufficiently fast roll-off of gain to let us achieve performance goals above 5 rad/s, and still
meet the stability robustness constraints of the Small Gain Theorem. Since frequency
dependent actuation seems to be the key to this problem, intuition suggests that perhaps

more success could be obtained by shaping the control directly, rather than relying on
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penalization of the errors. Therefore, an alternative method of applying loop-shaping

techniques involving frequency dependent penalty of the control, u, is now addressed.

Section 7.4.3 Weighted-Control H.. Design

As deduced in the previous section, the compensator designs obtained to this point

suggest the shape of an "ideal" compensator response for the BEA segment phasing/jitter

control problem. In order to meet performance specifications, it appears that a design

methodology is needed which produces a compensator that injects high gain up to a certain

critical frequency, and then rolls off very quickly so as to meet the stability robustness test

of the Small Gain Theorem. The crucial problem, then, is how to directly effect the shape

of this desired compensator. Since the frequency response of the control and the

compensator are directly proportional (u = Ky), it would appear that by shaping the
frequency response of the control, we should be able to shape the frequency response of

the compensator to a large extent. Fortunately, the system performance vector contains the

system control as well as segment phasing and LOS errors, so that the loop-shaping

methodology previously discussed may be conveniently applied to this compensator

shaping problem by focusing on the controls portion of the error vector. As discussed in

Section 5.3.4, performance objectives for the appropriately scaled weighted-control loop-

shaping problem can be posed as

II Tud(s) 11_ <
II Wu(s) 110 (7.10)

In order to obtain the compensator frequency response shape described above, (7.10)

indicates that the control weighting function, Wu(s), should be selected so as to be small at
low frequency and large at high frequency. Choosing the weighting function in this

manner forces the control to be high at low frequency and roll-off quickly at high frequency

as desired. It is interesting to note that the shape of the control weighting function specified

here is the inverse of the shape of the error weighting function used in Section 7.4.2.

Once a state-space realization is obtained for the control shaping filter,

Wu(s) = A 1
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then the filter dynamics can be written

lp(t) = A, p(t) + Bw u(t)

u'(t) = Cw p(t) + D. u(t) (7.11)

The augmented plant is represented by

, et() I [ 0 F (t) 1 0 B
e'u(t)

u'(t I = [ '0 C" L p(t) I + [ u(t)

y(t) = [c3 0] p(t) + d32 d'(t) (7.12)

and solution of the Riccati equations may proceed. Selection of an appropriate control

weighting function is now addressed.

In order to again keep the number of design parameters and additional model states

small, the following form for the single control weighting function is adopted:

wa(s) = k(s+Z) p
z (s+p) (7.13)

Such a SISO shaping filter is first-order, with a simple pole at frequency p, zero at

frequency z, and dc gain k. There are therefore three design parameters for the weighted-

control problem. As in the weighted-error design, once a state-space realization is obtained

for (7.13),

Wu(S) =Ia, I bw 1

c, I d,

the 24-input, 24-output control-weighting function is obtained by letting
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W~s) {[ awl24 1 bwI24]
1w 124 d, 124

The design process is then carried out by selecting various values for z, p, and k, until a

robust design that meets performance specifications is obtained.

Figure 7.28 shows the maximum singular value frequency response of a control
shaping filter with a zero at s = -5 rad/s, a pole at s = -500 rad/s, and a dc gain of 77.
From the figure it can be seen that the shape of this frequency response is indeed the

"inverse" of the shape of the error shaping filter frequency response used in the previous

section's loop-shaped H2 design (recall Figure 7.19), in that the control filter response is
small at low frequency and large at high frequency. Also note that the control shaping filter
zero frequency is slightly greater than the error shaping filter pole frequency, so that the
weighted-control H.. design does not penalize the system controls at as low a frequency as

the weighted-error H2 design penalized the performance variables. Figure 7.29 shows the
frequency response of the T22 block of the H.. design obtained from controller synthesis

using the augmented plant associated with this control shaping filter. From Figure 7.29 it
can be seen that the design meets closed-loop performance specifications at all frequencies,
and it seems that the intuition which has led us to this point has been justified. As with the
H2 loop-shaped error design, this design was arrived at via trial and error iteration with the
design parameters (z, p, and k). Only the H,, design results are presented for the loop-

shaped controls technique, because the H2 designs resulting from this method were almost
identical with the H., design, just as seen in the reduced bandwidth designs of Section 7.3.

As was the case for the robust designs, the H. loop-shaped control solutions yielded

slightly smaller infinity-norms than the H2 solutions, and, for the sake of brevity, only the
best H. design is therefore presented.
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Figure 7.28 Control Shaping Filter Frequency Response.
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Figure 7.29 Closed-Loop Transfer from All Disturbances to All Errors (T22)
(Wei ghted- Control H,,, Design).
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Figure 7.30 shows the maximum singular value frequency response of the T 1I block of
the weighted-control Ho design, and Figures 7.31-7.34 show the frequency responses for

the four subblocks of the T22 transfer function. As can be seen from Figure 7.30, the
closed-loop transfer about the delta block has infinity-norm less than 1 (0 dB), so the H,

loop-shaped control design is indeed robust to the modeled uncertainty. Figure 7.31
indicates that the transfer from the torque disturbances to the segment phasing errors is

driving performance of the design, and, of course, all the other subblock frequency

responses are seen to have infinity-norms less than 1 (0 dB).
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Figure 7.30 Closed-Loop Transfer about AM (TI 1)
(Weighted-Control H , Design).
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Figure 7.31 Max. Singular Value Closed-Loop Transfer from
Torque Disturbances to Segment Phasing Errors (T22 1 1)

(Weighted-Control H Design).
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Figure 7.32 Max. Singular Value Closed-Loop Transfer from

Sensor Noise to Segment Phasing Errors (T2212)
(Weighted-Control H. Design).
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Figure 7.33 Max. Singular Value Closed-Loop Transfer from

Disturbance Torques to Line-of-Sight Errors (T2221)
(Weighted-Control H,, Design).
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Figure 7.34 Max. Singular Value Closed-Loop Transfer from

Sensor Noise to Line-of-Sight Errors (T2222)

(Weighted-Control H. Design).
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Figure 7.35 shows the maximum singular value frequency response of the weighted-
control IH-0, design compensator. The most significant difference between the frequency

response of this compensator and the H2 loop-shaped error compensator response is the
high gain maintained by the H,, compensator over the frequency band from about 5 to 100

rad/s. This is what allows the H. loop-shaped control compensator to meet performance

specifications in the frequency range where the H2 loop-shaped error compensator could
not. Additionally, the maximum singular values of the H,,o loop-shaped control

compensator are about 7 to 8 dB greater than those of the H2 loop-shaped error

compensator in the frequency bands both above and below this critical region. It is the
ability of the H0, loop-shaped control compensator to preserve high gain in the high

frequency region and still roll-off fast enough to meet the stability robustness constraint that

is especially crucial to the success of this design. Finally, Figure 7.35 indicates that there

is a region of particularly high compensator gain between -18 and 30 rad/s, including what

appears to be a very lightly damped compensator pole at about 28 rad/s. The obvious

presence of this po;e seems to indicate that the compensator is performing some type of

critical pole-zero cancellation of the plant dynamics at about 28 rad/s, in order to extend the

design's disturbance rejection capability to higher frequencies.
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Figure 7.35 H00 Loop-Shaped Control Compensator

Maximum Singular Values.

134



Figure 7.36 shows the maximum singular value frequency response of the
complementary sensitivity at the plant output for the weighted-control H, design. Since

the H.. loop-shaped control compensator is so effective at preserving hig> gain at high

frequencies, we should expect the bandwidth of this design to be significantly higher than

that of the other robust designs. From Figure 7.36 it can be seen that this is indeed the
case. The bandwidth of the H, loop-shaped control design is 80 rad/s, which is almost

twice as large as the bandwidth of the weighted-error H2 design. The H. loop-shaped

control design should therefore be expected to have a significantly quicker time response
than any of the previous robust designs. Note that the H. loop-shaped control design

bandwidth still falls considerably short of the 160-180 rad/s bandwidths exhibited by the
unconstrained bandwidth designs of Section 7.2, but the H, loop-shaped control design is

robust to the unmodeled high-frequency dynamics, while the unconstrained bandwidth

designs were not.
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Figure 7.36 Complementary Sensitivity at Plant Output
(Weighted-Control H Design).

From the results presented in this chapter, it is obvious that the Hoo loop-shaped control

compensator design is the best design for the BEA segment phasing/jitter control problem.
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Of all the design methods applied, only the H,. loop-shaped control compensator yields a

closed-loop system that meets d to e transfer infinity-norm performance specifications, and
is simultaneously robust to the high-frequency dynamics truncated in the model reduction
process. Additionally, the H,,. loop-shaped control compensator design is of significantly

higher bandwidth than any of the other robust designs considered. The added flexibility

and power of loop-shaping design methods over traditional optimization techniques are
therefore demonstrated. The only disadvantage of the H*, loop-shaped control

compensator is that it is of higher order than any of the other compensators designed (80
states for the -L, loop-shaped control compensator versus 72 for the loop-shaped error H2

compensator or 56 for the robust H2/H. designs), and is therefore more cumbersome to

implement. However, reduction of compensator order may be possible, allowing this

problem to be somewhat alleviated.

A successful design for the BEA segment phasing/jitter control problem set forth in this
thesis has now been obtained. As a final step in the control system synthesis procedure,

certain issues, such as possible implementation methods and associated requirements,

remain to be addressed in order to verify the practicality of the proposed design. Also,

control system designs are typically validated via time domain simulation. In this way, it
can be verified whether the design actually meets specified performance goals, and other
interesting closed-loop system characteristics may be observed. Finally, performance

robustness issues, or expectations of performance under reasonable types of uncertainties,

are well to consider. All of these implementation/design validation issues are pursued in

Chapter 8.
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CHAPTER 8

Implementation/Validation Issues

8.1 Introduction

This chapter addresses several topics which fall under the heading of practical
implementation/design validation issues. Section 8.2 presents a standard framework for

digital implementation of continuous time compensators like those designed in Chapter 7,

and discusses several relevant issues arising from ihe analog to digital conversion process.

Section 8.3 illustrates the details of application of Moore's Balance and Truncate model

reduction algorithm to the task of simplifying the 80th order compensator derived for the
BEA segment phasing/jitter control problem in Chapter 7. In Section 8.4, open and closed-

loop simulations using both deterministic and stochastic disturbance inputs are performed,

and results of steady-state covariance analyses are presented for the stochastic disturbance

scenarios. Finally, Section 8.5 addresses concerns regarding performance robustness and

the effects of parametric uncertainty of the open-loop plant model natural frequencies on

closed-loop system stability.

8.2 Digital Implementation Issues

The compensator design methodologies presented in Chapter 5 and applied to the BEA

segment phasing/jitter control problem in Chapter 7 assume a continuous-time (C-T)
framework of operation for all system elements as shown in Figure 8.1. While this

assumption is generally valid for the plant, G(s), realistic compensator implementation

scenarios call for control algorithms to be executed by a digital computer, which operates
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on a discrete-time (D-T) basis. Implementation requirements therefore necessitate that the

C-T BEA segment phasing/jitter control compensator designed in Chapter 7 somehow be

converted to the D-T domain. Consider Figure 8.2, which depicts a standard framework

for accomplishing this analog to digital conversion. Note that in Figure 8.2, the C-T

compensator of Figure 8.1 has been replaced with a D-T equivalent compensator, which

consists of a low-pass pre-filter (PF), a sampling mechanism with period T, a D-T (digital)

compensator, D(z), and a zero-order-hold (ZOH) element in series. The operation of the

D-T equivalent compensator can be summarized as follows. The C-T output signal, y,

enters the low-pass pre-filter, whose break frequency (recall the discussion of low-pass

filters in Section 7.4.2) is selected so as to correspond to the closed-loop bandwidth, com.

The purpose of this pre-filtering is to eliminate any spurious high-frequency noise which

may be present in the non-ideal system, thereby ensuring that the frequency of the "fastest"

signal that reaches the sampler is known. This is important because the sampling period,

T, is selected based on this fastest frequency, so as to satisfy the requirements of the

Sampling Theorem [2117. The pre-filtered signal is then sampled every T seconds, yielding

a discrete sequence of numbers upon which the D-T compensator (computer) can act.

Next, the D-T compensa~or, which is a function of the complex variable,

z = e-sT

utilizes the current and past sampled output values and the control algorithm software

programmed into the computer to generate new D-T command values. Finally, the zero-

order-hold takes these numerical values and holds them constant over the sampling interval,

thereby creating a C-T control signal to be fed into the plant.

7 With the system bandwidth given by 0 m, the Sampling Theorem states that the sampling period

should be selected so as to satisfy

T <
O~m

The Sampling Theorem provides a theoretical upper bound on T so as to prevent sampled high-frequency

signals from being interpreted as low-frequency signals, a phenomenon known as aliasing [21]. In practice,

however, the sampling period is usually selected so as to be 10 to 20 times faster than indicated by the

Sampling Theorem.
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Figure 8.1 Open-Loop System with C-T Compensator.
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Figure 8.2 Open-Loop System with D-T Equivalent Compensator.

A number of important issues arise as a consequence of adopting this commonly used
compensator implementation scheme. As the preceding discussion indicates, one
particulary important issue is that the sampling period must be selected so as to be
significantly "faster" than the system closed-loop bandwidth, Oim. Very high bandwidth

systems therefore require extremely small sampling periods, sometimes so small that the
limitations of available sampling hardware come into play. For systems of this sort, the

problem of not being able to sample fast enough can be further exacerbated by the fact that
the length of the sampling interval also depends on the amount of computation and signal
processing time required by the computer to generate new command values. Since
computation time is directly proportional to the number of operations performed, higher

dimensional compensators require more processing time than lower order alternatives.
Writing efficient code and reducing compensator order to the lowest level possible is

therefore a must.
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Another issue that arises is conversion of the C-T compensator differential equations

into D-T difference equations suitable for use in a digital computer. Methods of making

such conversions are well-known and not particularly difficult to implement. The standard

way in which this is accomplished for the system of Figure 8.2 is as follows. Given a

state-space realization for the C-T compensator,

Ck 0 (8.1)

the D-T finite-difference equivalent state-space representation is given by [211

F eAT A-i' [eT - I] Bk

D(z) k
Ck 0 Ck 0 (8.2)

A number of remarks concerning (8.2) are in order. First, (8.2) clearly illustrates the effect

the sampling period has on the D-T compensator equations. Second, (8.2) also indicates

that the D-T compeysator is of the same order as the C-T compensator. Since

programming languages operate on a bit level and cannot perform matrix arithmetic, scalar

equations must be coded for each compensator state. Thus, it can clearly be seen that

higher-order compensators result in longer computation times, motivating the use of model

reduction techniques on controller realizations.

An attempt is now made to identify how the above issues directly affect the BEA
segment phasing/jitter control problem. Recalling that the loop-shaped II, design selected

in Chapter 7 had a bandwidth of 80 rad/s, the Sampling Theorem calls for a sampling

period of no greater than 39.27 milliseconds. In practice, however, sampling periods 10 to

20 times faster than that called for by the Sampling Theorem are often used, so that a more

likely value for T is 4 milliseconds. Such a sampling period is quite small, but not beyond

the level reasonably achievable by modern sampling equipment. However, the effect of the

high compensator dimensionality on the required sampling interval mentioned above has

not been accounted for, and could present significant problems. As mentioned above,

reduction of compensator order can help to alleviate this problem, and shall therefore now

be addressed.
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8.3 Reduction of Compensator Order

As discussed in Chapter 4, Moore's Balance and Truncate model reduction algorithm

provides a convenient and intuitive method for attacking the problem of reducing model

order. Using the B&T technique, uncontrollable/unobservable states are easily identified

on the basis of small Hankel Singular Values (HSVs), and may then be removed from the

system model. This section illustrates the details of application of the B&T model
reduction technique to the 80-state I-I. loop-shaped control compensator model obtained in

Section 7.4.3. The primary objective is to reduce compensator model order as much as

possible, while still meeting the infinity-norm performance specifications established for

the BEA segment phasing/beam jitter control system.

Figure 8.3 shows the Hankel Singular Values of the H.. loop-shaped control

compensator model versus state dimension. From the figure it can be seen that the

magnitudes of the compensator HSVs decrease somewhat gradually up to about the 70-

state level, at which point a sharp drop-off in magnitude occurs. Such a sharp break in the

curve indicates that several of the compensator states above the 70 point level are

significantly more uncontrollable/unobservable than the first 70 states, and may possibly be

deleted without seriously affecting closed-loop performance in an adverse manner. Based

on this assumption, reduced-order compensator models of various dimension were

generated, and the resulting closed-loop performance was evaluated until the lowest order

controller which still met performance specifications was obtained.
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Figure 8.4 shows the maximum singular value closed-loop transfer from d to e for a
system incorporating a 72-state compensator ROM. Since the infinity-norm of this transfer
function can be seen to exceed 0 dB, such a reduced-order compensator obviously does not

result in achieving performance specifications (albeit over a very small frequency range),
and is therefore unacceptable. On the other hand, consider Figure 8.5, which shows the
maximum singular value closed-loop transfer from d to e for a system incorporating a 73-

state compensator ROM, as well as for the full 80-state controller realization. From this
figure it can be seen that the 73-state compensator does what the 72-state compensator can
not, namely achieve a pole-zero cancellation at -4.8 rad/s so that performance specifications

are met. It can also be seen from Figure 8.5 that there is very little difference between the
closed-loop transfers resulting from use of a 73 versus 80-state controller model, the main

contrast being several small bumps in the 73-state compensator system low-frequency
response that are not present in the full order compensator system response. Thus, the

73rd compensator state can be seen to be the crucial one in terms of achieving performance

goals, and the 73-state controller realization may therefore be adopted.
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As a final precaution to ensure that nothing catastrophic results from using the 73-state

compensator model, Figures 8.6 and 8.7 respectively show the maximum singular value

frequency responses of the 73 and 80-state compensators, and of the transfer about the

delta block for the 73-state controller closed-loop system. From the figures, it can be seen

that the two compensators have virtually identical maximum singular value frequency

responses, and that robustness is preserved by using the 73-state compensator realization.

Also, since the full and reduced-order compensators have nearly identical maximum

singular values, it may be deduced that the bandwidth of the reduced-order system is the

same as the 80 rad/s bandwidth of the full-order system.

I-

FREQUENCY (rad/s)

Figure 8.6 73 and 80-State H.. Loop-Shaped Control Compensator

Max Singular Value Frequency Responses.
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In this section, it has been demonstrated that use of the B&T model reduction technique

allows elimination of 7 unnecessary states from the compensator model, yielding a

significant (-10%) decrease in system complexity and required computation time. It has

also been shown that reduction of the compensator model order to 73 states does not

significantly detract from closed-loop performance and stability robustness, and in general

does not alter any of the significant frequency response dependent characteristics of the

resulting system. Consequently, the 73-state compensator is used in the validation of the

control system design via simulation which follows.

8.4 Design Simulation

8.4.1 Introduction

In this section, the reduced-order Hc, loop-shaped control compensator design obtained

in Section 8.3 is validated via time-domain simulation and steady-state covariance analysis

for both open and closed-loop BEA models. In Section 8.4.2, the system is assumed to be
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driven by filtered white noise disturbance inputs, and time domain simulation allows the

relative magnitudes and spectral contents of the open and closed-loop errors to be

compared, while steady- :ate covariance analysis techniques demonstrate the satisfaction of

the infinity-norm bound on stochastic input-output RMS values asserted in Section 3.4.2.

In Section 8.4.3, the disturbances are assumed to be sinusoidal, and representative time

responses which illustrate the significant differences between open and closed-loop

behavior under deterministic conditions are presented. As once again presentation of

results for all system variables would result in a prohibitively large number of plots, an

effort has been made to present only selective time responses which demonstrate

characteristic or otherwise noteworthy behavior.

8.4.2 Stochastic Time-Domain Simulation

In this thesis, the fundamental premise upon which control system design is based is

the induced-norm property of the operator infinity-norm to RMS (2-norm) bounded inputs

and outputs. Based on this property and the scalings derived in Chapter 6, a 73-state

compensator has been obtained which is supposed to guarantee that the RMS values (2-

norms) of the segment phasing and LOS errors remain less than 0.15 micrometers and 0.1

microradians, respectively, for all torque disturbance inputs of RMS (2-norm) less than

0.353 N-m, and measurement noises of RMS (2-norm) less than 1.414x10- 2

micrometers/microradians. In this subsection, the infinity-norm bound on input-output

relationships is shown to be satisfied for the stochastic scenario in both the open and

closed-loop settings. This is accomplished via steady-state covariance analysis techniques.

Additionally, time responses are presented which illustrate characteristic system behavior

under the influence of filtered white noise disturbances. Open and closed-loop results are

presented simultaneously in order to facilitate comparison between the two.

As mentioned in the beginning of this thesis, the time-domain nature and spectral

properties of the torque disturbances and measurement noise present in the BEA system are

not precisely known. Therefore, the assumption is made that the disturbances can be

represented as random processes with typically broadband spectral characteristics. One

convenient way of modeling such processes is to represent them as outputs of linear-time-

invariant low-pass systems driven by white noise. Such band-limited random signals are

often called filtered white noise or "colored-noise" processes, because their spectral content

is no longer equal at all frequencies, as is the case for white noise processes. As long as

the bandwidth of the coloring filter is selected to be greater than the bandwidth of the
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system being driven, colored-noise inputs may be used to excite all system natural

frequencies. Modeling the system disturbances as filtered white noise processes therefore

allows the dominant frequency dependent behavior of the system to be elicited.

Consider (8.3), which shows the transfer function of a typical SISO low-pass coloring
filter. Here, k is the dc gain and rob is the coloring filter break frequency.

w(s) k cob
S + COb (8.3)

Letting the individual elements of the disturbance vector be represented by

di(s) = w(s) (8.4)

where 4 is unit-intensity white noise, makes di a filtered white noise process as desired,

and the following relations are known to hold [221. The power-spectral-density (PSD) of
di, 4d(s), is given by

sd(s) = w(-s)w(s) 0(s) = w(-s)w(s) = 2 + (-S2 + Qo{ (8.5)

and the variance of di, Gd2, is given by the integral of Od

= 1 Od() do = k2 Ot
Od 2

(8.6)

Since the RMS value of di, Od, is equal to the square-root of the variance of di, Gd 2, (8.3-

8.6) allow construction of stochastic disturbance inputs of bounded and known RMS
values, via prudent selection of the coloring filter break-frequency and dc gain. Note that
for a given disturbance variance, (8.6) indicates that k2 and cob are inversely proportional.

Therefore, higher bandwidth coloring filters will have smaller dc gains. Since any

disturbance spectral content beyond the closed-loop system bandwidth is automatically

attenuated, the approximate worst-case disturbance for a given disturbance variance is
constructed by selecting cob to be just beyond the system bandwidth, thereby creating the

"highest gain" disturbance which still excites all the system natural frequencies. Selecting
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CWb to equal 90 rad/s to exceed the closed-loop bandwidth of 80 rad/s observed in Chapter

7, and employing the single element RMS bounds corresponding to the vector RMS

bounds noted at the beginning of this section (0.25 N-m and 3 ',

micrometers/microradans), (8.6) yields respective values of 0.0373 and 7.454x10 "10 for

disturbance torque and measurement noise coloring filter dc gains.

Now, in order for steady-state covariance analysis techniques to be applied, the

dynamics of the coloring filters must be augmented to the system dynamics representing the

transfer from d to e, so that the system is in effect driven by white noise inputs only. If a

state-space realization for the individual coloring filters is obtained

fk- [ b 1(8.7)

then the MIMO weighting function, W(s), resulting from applying (8.7) to all the system

disturbances can be formed simply as

W(s) =[Aw[ Bw = awld bwIdl
C Dw I L c id dwldJ (88)

where it is understood that the torque disturbances and measurement noise filters

incorporate the different k values specified above, and Id is the square identity matrix with

dimnsion equal to the number of disturbances (=10). Consequently, if the state-space

realization for the open or closed-loop transfer from d to e is given by

G II(s), T22(s) = A 0B1

then the dynamics of the augmented system, Ta(s), representing the transfer from white

noise inputs to the performance vector e (either open or closed-loop as appropriate) can be

represented as

Ta(s) JAa Ba
Ca Da (8.9)

where
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A. [A BCw1

a= [ 01]
Q =[C 0l

Da = 0

It is a well-known fact [9] that an LTI system driven by white noise inputs has a steady-
state state covariance matrix, Ex, which is obtainable as the unique, positive-definite

solution of the standard Lyapunov equation

AaZx + xAa + BaB 0 (8.10)

and a steady-state error covariance matrix, le, which is given by the relation

= Ca-Ca (8.11)

The RMS values of the segment phasing and LOS errors are easily obtained from (8.11) by
picking off the diagonal elements of X-e corresponding to the individual error variances,

adding, and taking the square-root of the resultant sum. With the disturbances selected 's

specified above, the framework described by (8.3-8.11) thus allows convenient time-

domain simulation and direct verification of the design's ability to meet the performance

objectives specified for the BEA segment phasing/jitter control system. The necessary

groundwork for validation of the compensator design has now been laid. Results of

application of the above procedure are now presented.

Table 8.1 below shows the variances for the 14 segment phasing and 2 LOS errors, as

determined from solution of (8.10) and (8.11), and the RMS values of the total segment
phasing and LOS errors, calculated as explained above, for the H., loop-shaped control

design. Most obvious from the numerical values in the table is that the open-loop variances

are, as expected, significantly greater in magnitude than the closed-loop error variances,

demonstrating the improvement in system performance achieved via feedback.
Additionally, the variances of the segment phasing errors are in general significantly larger
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than the LOS error variances. This too, is expected, as the transfer to the segment phasing
errors was seen to drive attainable performance of the closed-loop weighted-control H ,

design in Section 7.4.3. Also interesting to note from the table is that for the open-loop

case, the variances of the segment phasing errors at the mirror corners (errors 1, 3, 5, 7, 9,

12, and 14) are in general 2 to 3 times as big as the variances of the errors in the middle of

segment edges, while such a pattern does not hold for the closed-loop case. The most

important information contained in the table appears in the last two rows, however, which

detail the open and closed-loop RMS values of the total segment phasing and LOS

performance vectors. As can be seen from the entries, the open-loop RMS error values

exceed the 0.15 micrometer segment phasing and 0.10 microradian LOS performance

specifications, while the closed-loop error variances are well within the specified

performance tolerances. Since the scaled problem was set up so that a d to e transfer

infinity-norm of 1 guaranteed achieving these performance specifications, and the closed-

loop design selected had infinity-norm of 0.9413, the satisfaction of the infinity-norm

bound on input-output RMS values is thus demonstrated for the closed-loop case (0.0736

< 0.9413 x 0.15 = 0.141, and 0.01056 < 0.9413 x 0.10 = 0.0941). Also, the magnitude

of the improvement between closed and open-loop performance can be seen more clearly

when one considers that the open-loop segment phasing and LOS error RMS values are

respectively more than 65 and 20 times greater than their closed-loop counterparts.

Recalling that the infinity-norm of the open-loop transfer is 59 dB (891), it is obvious that

since the open-loop RMS error values at most exceed 33 times performance specifications,

that the infinity-norm RMS input/output bound relationship is satisfied for the open-loop

case as well (33 < 891).
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Open-Loop Closed-Loop

Ospi 2 (microm)2  2.7346 3.1 159e-04

Gsp22 (microm)2  1.3023 8.1882e-04
Os132 (microm)2  2.720 1 2.6163e-04

Osp2 (microm)2  1.3150 6.75 35e-04

Osp52 (microm)2  1.6023 1 .9846e-04

asP2 (microm)2  0.9678 8.517le-04

Osp72 (microm)2  2.7346 3.1 159e-04

0aP82 (microm)2  1.0804 2.9822e-04
OSP 2 (microm)2  2.720 1 2.6 163e-04

OaPio 2 (microm)2  0.8311 2.3967e-04

GPI 12 (microm) 2  0.8321 9.6641e-05

Gsp12 2 (microm)2  2.2888 3.3599e-04

Usp1 32 (microm)2  0.8896 3.2232e-04

asp142 (microm)2  2.2856 4.3688e-04

OI0SX2 (microrad)2  0.0332 8. 3876e-05

a0 50s 2 (microrad)2  0.0 177 2.7552e-05

asp(microm) 4.9299 0.07362
aljs (microrad) 0.2257 0.01056

Table 8.1 Steady-State Covariance Analysis Results
(Reduced-order H, Loop-shaped Control Design).

Figures 8.8 and 8.9 show representative time responses of the two BEA filtered white

noise torque disturbances, generated as described in the preceding paragraphs, and sampled

at intervals of 0.01 seconds. The random nature of the torque disturbances is obvious from

the plots, as any two consecutive values seem to be highly uncorrelated. The RMS values

of the torque disturbances also seem to be accurately represented, as it appears that 95
percent of the values lie within the 3a margins L+ 0.75 N-in).
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Figure 8.9 Stochastic Torque Disturbance 2 Time Response.
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Time responses are not presented for the 8-element measurement noise vector, for two
main reasons. First, measurement noise has no effect on the error vector in the open-loop

setting, so that open-loop performance is characterized in terms of attenuation of the torque

disturbances only. Therefore, closed-loop system performance can only fairly be

compared to open-loop system performance in terms of the torque disturbance rejection
properties of the two systems. Second, as was seen from the transfer functions of the
various closed-loop subblocks in Section 7.4.3, it was the transfer from the torque

disturbances to the segment phasing errors that drives performance of the closed-loop
weighted-control H. design, not the transfer from the measurement noise. Thus, the

measurement noise is of secondary importance to performance of the closed-loop system.

Simulation both with and without measurement noise validated these conclusions, and the

final simulation results are therefore presented with torque disturbances only, although
measurement noise was included for purposes of the steady-state covariance analysis

performed above.

Figures 8.10 and 8.11 respectively show the open and closed-loop segment phasing
errors at position 14 (reference Figure 2.5) as a function of time, again sampled at intervals
of 0.01 seconds. Position 14 is at the midpoint of the edge connecting primary mirror petal

1 to the center primary mirror segment, and exhibits a time response characteristic of the

other segment phasing errors. From the figures, it can be seen that, on the average, the
open-loop response is significantly larger than the closed-loop response, as expected. in
fact, the largest amplitude of the open-loop error is more than twenty times the magnitude

of the largest amplitude closed-loop error value. The closed-loop system can again
therefore be seen to exhibit a significant improvement over the open-loop system
performance. The open-loop error also appears in general to be less jagged than its closed-
loop counterpart, or in general more slowly time varying. This can be interpreted as

meaning that the open-loop error is domir 'd by low-frequency components, while the

closed-loop error is dominated by higher-frcquency components. Since the compensator
employed in the closed-loop system was designed specifically to reject low-frequency

disturbances, this interpretation makes sense. Also note that both these error time
responses are significantly less jagged than the torque disturbances. This effect can be

attributed to the high-frequency attenuation resulting from passing the colored-noise
through a lower-bandwidth system.

153



0

ti

I LS

,-

E
0)
0

.2
0 U . U.S . .5 2 2.5 3 3.5 4 4.5

Time (s)

Figure 8.10 Open-Loop Position 14 Segment Phasing Error Time Response.

E
.2

0)

C

'E

CD
E
(n

0

U 8.s 1 1.5 Z .s 3 3.5 4 4.5 5

Time (sec)

Figure 8.11 Closed-Loop Position 14 Segment Phasing Error Time Response.

154



Figures 8.12 and 8.13 respectively show the time responses of the open and closed-

loop LOS errors about the X axis to the disturbances of Figures 8.8 and 8.9. Again, note

that the open-loop response reaches significantly larger magnitudes (about 10 times greater)

than the ciosed-loop response, and also displays a more predominantly low-frequency

nature than does the closed-lonp response.
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Figure 8.12 Open-Loop LOS X Error Time Response.
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As a final item of interest, Figures 8.14 and 8.15 show the time responses of two of the

system controls generated in the closed-loop simulation. Figure 8.14 shows the time

response of an in-plane (radial) actuator located on primary mirror segment 1, and Figure

8.15 shows the time response of the colocated out-of-plane (longitudinal) actuator. Two

items of significance may be observed from the figures. First, the system controls display

a random and predominantly high-frequency nature consistent with the high-frequency

nature observed in the closed-loop performance variable time responses. Second, note that

similar and very small radial and longitudinal actuator levels (fractions of a millinewton) are

called for in rejecting these disturbances. Actuator saturation therefore does not appear to

be a concern for operation in the disturbance environment created, although the very high

actuation rates called for could provide some problems.
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In this section, the reduced-order weighted-control H,., design obtained in Section

7.4.3 was validated for stochastic torque disturbance inputs via time domain simulation and

s.teady-state covariance analysis. Via covariance analysis, the design was shown to meet

performance specifications for filtered white noise inputs of prescribed RMS values,

thereby demonstrating satisfaction of the infinity-norm bound relationship on input/output

RMS values in a closed-loop setting. Satisfaction of this bounding relationship was also

shown for the open-loop system, and it was verified that open-loop performance does not

meet performance objectives. Time domain simulation further illustrated the superiority of

the closed-loop system over the open-loop system, and demonstrated the low-frequency

disturbance attenuation properties of the closed-loop system. While the results presented in

this section concerning the response of the open and closed-loop systems to stochastic

disturbances has revealed much about the nature of the compensator selected and the

resulting closed-loop system, they still do not reveal as complete a picture as might be

obtained. Toward this end, the response of the open and closed-loop systems to

re resentative deterministic disturbance inputs will now be addressed.

8.4.2 Deterministic Sinusoidal Simulation

In this section, system response to sinusoidal torque disturbances is briefly addressed.

The main purpose of this is to further demonstrate the differences between the open and

closed-loop system time behaviors, and to illustrate certain details of the compensator

design not yet revealed. As the infinity-norm bound on input/output behavior has already

been shown to be satisfied in the stochastic setting, that topic is not addressed herein.

Figures 8.16 and 8.17 respectively show the open-loop maximum amplitude segment

phasing and LOS Y errors versus time for a disturbance torque vector of the form

0.11 sin (0.628t) 1
dT(t) = N-rn

[0.1 lsin (0.628t - 7 (122 (8.12)

acting for a duration of 10 seconds. Note that each element of the sinusoidal disturbance

has 0.11 N-m maximum amplitude, frequency of 0.628 rad/s, and period equal to 10

seconds, so that the simulated disturbance has been constructed so as to act over one

period. From the equations presented in Section 6.4, it can be verified that the 2-norm of

(8.12) acting over its period is 0.35 N-m, so that (8.12) is consistent with the upper bound
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on allowable disturbance 2-norms established in Section 6.4. It can also be seen from

(8.12) that the two torque disturbances are 90 degrees out of phase with each other.

Selecting the disturbance torque vector as in (8.12) provides a relatively general scenario

for comparing deterministic open and closed-loop system time responses, consistent with

the disturbance assumptions made up to this point.

Examination of Figures 8.16 and 8.17 reveals several interesting characteristics of the

open-loop system. The most obvious feature of the two plots is the very lightly damped

nature of the open-loop model, as evidenced by the tremendously long oscillatory time

responses. The effects of the sinusoidal disturbance torques are clearly evident in the first

10 seconds of the plots, but even 70 seconds after the disturbance has ceased to act, the

induced transient oscillations are still nowhere near having settled out. Fairly large open-

loop error magnitudes may also be observed from the figures. The unsatisfactory nature of

the open-loop system disturbance rejection performance is thus apparent.
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Figure 8.16 Open-Loop Max. Segment Phasing Error Time Response.
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Figures 8.18 and 8.19 show the respective closed-loop time responses of all the
segment phasing and LOS errors to the input disturbance vector of (8.12). By comparing
these figures to Figures 8.16 and 8.17, it can be seen that the maximum amplitudes of the

largest closed-loop segment phasing and LOS errors are respectively more than 20 and 12
times smaller than their open-loop counterparts. The most striking aspect of the closed-
loop responses, however, is the lack of slowly decaying transients observed in the open-

loop setting. Note that for the closed-loop case, 10 second period sinusoidal disturbances
translate into attenuated 10 second period sinusoidal outputs, indicating that the steady-state
is achieved very rapidly in the closed-loop design. Once the disturbance stops acting at the
10 second mark, there is virtually no evidence of undesirable overshoot or significant
transient oscillation occuring as was the case for the open-loop response. From the figures

it may therefore be deduced that one previously overlooked aspect of the weighted-control
H.. loop-shaped compensator is that it creates significant damping in the closed-loop

system, which can be seen to be desirable from the deterministic closed-loop time
responses of Figures 8.18 and 8.19.
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In order to verify this deduction, consider Figure 8.20, which is a complex plane pole-
plot for the weighted-control I-H, loop-shaped compensator closed-loop system. As can be

seen from the figure, several system poles still reside along the jw0-axis, but now, in

addition, there are several highly damped poles on the real axis, as well as a significant
number at an angle of approximately 30 degrees from the jco-axis. These poles have a

damping factor of approximately 0.56, which represents an over two order of magnitude

increase beyond the open-loop 0.005 uniform damping factor. Thus, in addition to

guaranteeing a bound on the 2-norms of the segment phasing and LOS performance
variables, the weighted-control H,, loop-shaped compensator markedly improves the

closed-loop deterministic time behavior via increased damping.
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Figure 8.20 Closed-Loop Pole-Plot.

In this section, the reduced-order weighted-control HI- loop-shaped compensator has

been validated under both stochastic and deterministic disturbance assumptions, using time

domain simulation and steady-state covariance analysis. The significant benefit of feedback

was demonstrated by the superiority of closed-loop system performance over open-loop

performance, in both the stochastic and deterministic settings. Additionally, it was shown
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that the weighted-control H,, loop-shaped compensator markedly cha. ges the complex

plane locations of the effective system poles, thereby increasing system damping. It is a

well-known characteristic of optimal feedback controllers that this shift in pole locations is

accomplished via selective "cancellation" of non-desirable open-loop zeros with

compensator poles, and subsequent replacement with desirable compensator zeros, so that

the closed-loop poles migrate to the selected compensator poles under feedback. This
process is called "approximate plant inversion" by some (3]. An obvious danger to such a

methodology is inexact knowledge of the open-loop plant pole/zero locations. Attempts to
"invert" a system's dynamics based on an inaccurate model can sometimes lead to

catastrophic degradations in system stability and performance. Therefore, in order to be as

complete as possible, the effects of parametric uncertainty on open-loor, system natural

frequencies are now addressed

8.5 Performance Robustness and Effects of Open-Loop
Natural Frequency Parametric Uncertainty

As discussed in the preceding paragraph, optimal controllers alter the behavior of the

open-loop plant via the mechanism of "approximate plant inversion", in which undesirable

system poies and zeros are respectively cancelled with compensator zeros and poles, and

the best system response achievable is then obtained via selection of any additional

compensator pole/zero locations. One obvious flaw in such a design methodology is that

uncertainty invariably exists in the location of the open-loop poles, due to approximations

and errors in the modeling process. If the true system poles are not exactly the same as

those of the design model, then the multivariable pole-zero cancellations employed by

plant-inverting techniques are not likely to be completely successful, and may even lead to

serious degradations in nominal syszin stability and performance. It is therefore of interest

to the designer to somehow assess the potential impact of open-loop pole location errors

prior to compensator implementation. Therefore, in this section it is demonstrated how the

Small Gain Theorem may be used to assess the stability robustness of the weighted-control
H,,, loop-shaped compensator closed-loop system to five percent parametric uncertainty in

the open-loop finite-element model stiffness m.,trix elements, corresponding to two and

one-half percent parametric uncertainty in the open-loop natural frequencies. Since the

Small Gain Theorem is known to be conservative, the actual effects of open-loop pole
location errors on closed-loop stability for two specific perturbed natural frequency models
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is then directly verified via computation of the closed-loop poles. Finally, robustness of

performance of non-perturbed and perturbed models is assessed via computation of the

closed-loop d to e transfer function frequency response.

As discussed in Sections 5.1 and 6.5, the Small Gain Theorem may be used to

conservatively assess the stability robustness of any system containing uncertainty, as long

as that uncertainty may be gain-bounded as a function of frequency. In particular, in this

thesis a framework has been developed for testing the stability robustness of systems
where the only uncertainty in the plant is modeled as a multiplicative error at the pL.it

output (reference Sections 5.1 and 6.5 for details). As was previously developed, stability
robustness of such an uncertain system may be guaranteed by ensuring that the infinity-
norm of the closed-loop transfer about the uncertainty block, lIT 1 I(s)ll, , is less than one,

as long as the infinity-norm of the uncertainty block is unity bounded. Consider Figure

8.21, which shows the maximum singular value frequency responses of multiplicative
errors, AM(s), at the plant output for two perturbed natural frequency systems, and of a

4th-order transfer function which effectively bounds both the errors. As mentioned above

and in Section 6.5, the multiplicative errors were obtained from the relation

AM(S) = (Ga(s) - G(s)) G(s)' (8.13)

where Ga(s) represents the complex valued transfer function matrix of a 108-state model
with plus or minus two and one-half percent error in the open-loop natural frequencies

evaluated at a given frequency, and G(s) represents the complex valued transfer function
matrix of the 56-state design plant model evaluated at the same frequency. As was also

previously mentioned, the basis for selecting such perturbed systems is a reasonable

assumption that the actual BEA system stiffness matrix elements are uniformly either five
percent greater or smaller than those of the modeled system. As can be seen from Figure

8.21, the nominal design model possesses large errors at high-frequency due to model-
reduction truncation of the high-frequency modes (as was previously the case for the

unperturbed system), but now there is also significant error at low frequency due to the

difference between modeled and "actual" open-loop natural frequencies. It can also be seen
from Figure 8.21 that although there are differences between the two multiplicative error

curves, they are not large, and one transfer function may therefore be used to effectively

bound the multiplicative error curve for all systems with natural frequency errors of up to

plus or minus two and one-half percent.
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Figure 8.21 Perturbed System Plant Output Multiplicative Errors and

Bounding Transfer Function Frequency Responses."

Now consider Figure 8.22, which shows the closed-loop transfer maximum singular
values about the delta block for the perturbed plants output multiplicative error bound of

Figure 8.21. As can clearly be seen from the figure, the maximum singular values of the

closed-loop transfer about the uncertainty block exceed unity (0 dB) over almost all of the
frequency range of interest. Figure 8.22 therefore unequivocally indicates that the closed-

loop system is not guaranteed to be robustly stable to two and one-half percent error in

open-loop natural frequencies, according to the sufficient test of the Small Gain Theorem.
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Figure 8.22 Closed-Loop Transfer about AM (TI 1)

(Perturbed Open-Loop Natural Frequency Systems).

The Small Gain Theorem is based purely on gain considerations, however, and is

known to be conservative. Therefore, the actual closed-loop systems using the two 108-

state perturbed natural frequency models and the 73-state reduced-order weighted-control
H-L. loop-shaped compensator may be formed, and the closed-loop poles and d to e transfer

function maximum singular value frequency responses may be computed to verify the

actual effects of the parametric uncertainty. In doing this for the two perturbed open-loop

models chosen, the resulting closed-loop systems are found to be stable, in spite of the

indications of the stability robustness test of the Small Gain Theorem. The conservatism of

the SGT is thus made apparent. Severe degradations in closed-loop performance do

however result, as can be seen from Figures 8.23 and 8.24 below. Figure 8.23 shows the

maximum singular value closed-loop d to e transfer for the system with five percent greater

stiffness than the design model, while Figure 8.24 shows the maximum singular value

closed-loop d to e transfer for the system with five percent smaller stiffness. Although one

might expect a stiffer system to better reject disturbances, Figure 8.23 indicates that this is

not the case, and illustrates the importance of feeding the precise location of the open-loop

poles and zeros to the optimal control problem. Figure 8.24 bears further testimony to this

importance, as the indicated performance of the less stiff system is even worse than that of
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the stiffer system. The difference in performance evident in the figures suggests that if

uncertainty does exist in open-loop pole and zero locations, it is better to have a stiffer

system, as intuition would also lead one to believe. Note that even in the presence of open-
loop natural frequency parametric uncertainty, closed-loop performance specifications are

met at low frequency, and the degraded higher frequency performance is, in general, still

superior to that of the open-loop system.
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Figure 8.23 Closed-Loop Transfer from All Disturbances to All Errors (T22 )

(5% More Stiff Open-Loop System).
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Figure 8.24 Closed-Loop Transfer from All Disturbances to All Errors (T22)

(5% Less Stiff Open-Loop System).

Since performance specifications are not met in the presence of two and one-half
percent open-loop natural frequency parametric uncertainty, the closed-loop system does

not possess robustness of performance to these types of structured parameter errors. This

observation raises the question of whether or not the closed-loop system displays

robustness of performance to the errors due to truncation of modes brought about by model

reduction. To answer this question, consider Figure 8.25, which shows the closed-loop

transfer from d to e maximum singular value frequency response for the "truth" model with

no parametric uncertainty. As can be seen from the figure, the system does indeed possess

robust performance for the errors due to model reduction.
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Figure 8.25 Closed-Loop Transfer from All Disturbances to All Errors(T22)

(108-State Truth Open-Loop System).

In this s ection, it has been shown that when a compensator is designed via H., optimal

control techniques, small levels of parametric uncertainty in open-loop system dynamics

may lead to severe degradation in closed-loop system performance. This may be attributed

to the common characteristic of all optimal control methodologies to attempt to "invert" the

dynamics of the plant via selection of compensator poles and zeros, and it may therefore be

concluded that precise knowledge of the locations of open-loop poles and zeros is crucial to

the succers of such design techniques. It has also been shown that the Small Gain

Theorem nay be applied to assess stability robustness of systems with open-loop pole

parametric uncertainty, but the conservatism of the methodology should prevent one from

definitely concluding that a particular closed-loop system will be unstable without

independct verification. Finally, robustness of performance was demonstrated for the

closed-loop system in the presence of errors due only to model reduction.

The coverage of design implementatioi/validation issues included in this thesis is now

complete. A summary of the results presented and conclusions drawn in this thesis is

therefore presented in Chapter 9, along with recommendations for further research.
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CHAPTER 9

Conclusions

9.1 Summary

In this thesis, a comprehensive application of robust multivariable control system

design techniques to a space-based laser beam expander segment phasing/jitter control

example problem has been presented. In Chapter 1, an SBL system concept and relevant

terminology was introduced, and a brief summary of the problem and its nature was

presented. In Chapter 2, the details of the BEA segment phasing/jitter control problem
were examined. A description of the physical system was given, a mathematical model

was derived in an appropriate form for open-loop analysis and model reduction, and

performance objectives were specified in terms of allowable RMS values (2-norms) of

selected segment phasing and line-of-sight error performance variables. In Chapter 3,

open-loop characteristics of the BEA model were studied. Nominal system stability,

multivariable poles and transmission zeros, and singular value frequency responses were

all addressed.

Chapter 4 introduced the topic of model reduction, which was performed on the high-

dimension open-loop system model in order to obtain a less cumbersome model for control

system design. Moore's Balance & Truncate algorithm, which allows the most

uncontrollable/unobservable model states to be removed, was used to reduce the state

dimension from 390 to 56, and characteristics of the reduced-order model were then

presented.
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Chapter 5 presented a flexible framework for robust control system design employing
the Small Gain Theorem for stability robustness analysis, and either H2 optimal, I-,,

optimal, or H2 /1H loop-shaping techniques for compensator design. Satisfaction of

stability robustness and performance conditions for all of these design techniques was then

equated with ensuring unity bounds on the infinity-norms of two closed-loop transfer
functions. Chapter 6 subsequently performed all modifications to the reduced-order system
necessary in order to obtain a design plant model consistent with the control system design
framework of Chapter 5. Norm-bounding of disturbance and error vectors, creation of a

disturbance environment scenario, measurement noise requirements analysis, and
representation of plant uncertainty due to model reduction were all addressed.

Chapter 7 provided a detailed comparison of performance characteristics and analysis of
trade-offs existing between designs resulting from application of the various controller
synthesis techniques of Chapter 5 to the design plant model of Chapter 6. Both
unconstrained bandwidth H2 and HI-,. designs were seen to meet nominal performance

specifications, but not the stability robustness test of the Small Gain Theorem. H2/H..

reduced bandwidth designs were able to meet stability robustness constraints, but resulted

in unacceptable degradations in closed-loop performance. Robust H2 loop-shaped error

designs were able to meet performance specifications over certain limited frequency bands,
but only H. loop-shaped control designs were able to completely meet both stability

robustness and nominal performance specifications. The 80th-order H,,. loop-shaped

control compensator was therefore adopted as the design of choice.

Chapter 8 surveyed several important design implementation/validation issues. A
standard framework for digital implementation of continuous-time compensators was
presented, along with the sampling and computation-time requirements engendered by

adopting such a framework. The potentially excessive computation time required by high-
order compensators motivated reduction of controller order, and the 73-state reduced-order
compensator obtained was then validated via time-domain simulation and steady-state

covariance analysis. Chapter 8 concluded with an examination of the effects of open-loop
natural frequency parametric uncertainty, which were seen to mainly be severe degradation

of closed-loop performance at higher frequencies. In contrast to the open-loop systems
with natural frequency parametric uncertainty, however, the open-loop system with errors

due only to model reduction was shown to possess robust performance.
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9.2 Conclusions

Several conclusions may be drawn from the compensator synthesis procedure carried
out in this thesis. Although little mention of it has been made to this point, of primary
importance are the difficulties associated with compensator design for large-scale systems

such as the SBL beam expander, and the resulting necessity of applying model reduction
techniques. Due to the large sizes of the matrices involved in modeling the system,

numerical problems were encountered early and often in attempts to use standard analysis

and design codes, and computation times were excessive (3 hours for a single full-order

system singular value response on a DecStation 3100). Model reduction was therefore

employed to the greatest extent possible in all phases of the design procedure, and
controller design could not likely have been accomplished without it.

The results presented in this thesis have shown that compensator design for large-scale

systems using reduced-order approximations is indeed possible, and that optimal control

techniques may be employed to design compensators for such systems that meet desired
performance characteristics. Requirements analysis via H,. optimization was shown to be

a useful tool in facilitating this procedure. Also, the utility (and conservatism) of the Small
Gain Theorem in assessing stability robustness to truncated dynamics and parametric

uncertainty was demonstrated. Finally, it was seen that although robustness of

performance was not explicitly designed for, due to the relatively small significance of high
frequency modes in the frequency response of the problem considered, performance

robustness was incidentally obtained.

One of the most striking results presented in this thesis has to do with the superiority of
performance exhibited by the loop-shaped designs, which employ frequency-dependent
weights and scalings, as compared to the "brute-force" optimal solution methods which use

the plant model as is. Although loop-shaping techniques require some skill and intuition to
apply and result in additional compensator complexity, the additional degrees of freedom

afforded by such techniques were shown to yield significantly better results than solution
of the H2fHo. Riccati equation using only the nominal system model, and the utility of the

loop-shaping methodology was therefore demonstrated.
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A final conclusion of importance was demonstrated in Section 8.5, and has to do with

realistic expectations of compensator performance in a practical setting. It was shown in

Section 8.5 that even small errors in knowledge of open-loop system poles can result in

severe performance degradations of closed-loop systems incorporating compensators

generated via optimal control methodologies. Therefore, although the singular value plots

and linear simulations performed in this thesis validate the ability of the design to meet

performance objectives, one should not expect such perfect performance in the real world.

9.3 Recommendations for Further Research

The main shortcoming of the design procedure carried out in this thesis is that, due to

the need to limit model dimension, plant uncertainties were limited to the known error

caused by truncation of generally high-frequency dynamics in the model reduction process,

and later to open-loop natural frequency parametric uncertainty. In reality, other sources of

plant uncertainty such as actuator errors and time delays exist, and a more realistic design

approach should include some means of addressing these issues. Although the Small Gain

Theorem approach presented in this thesis is applicable to such issues, it was not applied

due to the complexity of the system already being considered. Additionally, the Small Gain

Theorem is quite conservative, and therefore may not be the best tool to use in the final

stages of design validation. Some type of robustness and performance analyses based on

these considerations should be carried out, however, in order to obtain a more realistic
picture of compensator performance. Doyle's structured singular value, otherwise known

as t [23], may provide one such analysis technique that does not possess the conservatism

inherent in the Small Gain Theorem. For real parameter variations, however, (such as the

stiffness uncertainties discussed in Chapter 8) the pt-analysis results may also prove to be

quite conservative.

Another issue to be addressed is how to actually design for performance robustness,

instead of simply attempting to verify it at the end of the design validation procedure.
Similarly, methods of directly incorporating stability robustness constraints into the optimal

control problem for large-scale systems would be useful. Again, methods based on the

structured singular value may provide the best avenue for pursuit of these problems.

In Chapter 8, it was seen how compensator order increases computation time and may

therefore drive the achievable sampling period in digital implementation of controllers.
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Although model reduction techniques were used in this thesis to reduce the order of the

selected compensator to 73 states, this is still a very high-order controller, and could pose

significant implementation problems. Therefore, decentralized control techniques which

break up the segment phasing and jitter control functions into several localized tasks,

thereby reducing individual compensator order, should be investigated.

The final issue to be resolved, which was mentioned in Chapter 1, but has been

somewhat glossed over since then, is that the segment phasing and jitter control functions

are only two components of the overall beam control problem. The wavefront control

problem, with all of its complexities and ramifications, remains to be addressed. The

deformation of the primary mirror inherent in most wavefront control schemes envisioned

would be sure to have some, possibly quite significant effects on the other aspects of the

beam control problem considered in this thesis. This third and most difficult control

function must therefore be addressed before it can be said that a truly satisfactory solution

to the beam control problem has been obtained.
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